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Abstract:  In order to characterize the explosive properties of high-nitrogen, 
energetic compounds, the heats of formation, either in the gas or the solid state, are 
often used as preliminary data.  Their relationship to the number of nitrogen atoms 
involved is usually known, so exploring it cannot furnish any new information.  
However, the very promising, quantitative structure property relationship 
(QSPR) approach utilizes the molecular surface electrostatic potential V(r).  We 
have therefore performed calculations for 12 azines and 10 azoles by the DFT 
B3PW91/cc-pVTZ method, and constructed their gas phase heats of formation 
∆f H°(298,g) by means of the isodesmic reaction approach.  The acquired gas 
phase heats of formation ∆f H°(298,g) were correlated with the molecular surface 
electrostatic potentials VS,max, VS,min, and VS(ring), which were calculated by the 
B3LYP/6-31G(d,p)//B3PW91/cc-pVTZ method.  It is shown that the VS(ring) 
electrostatic potential describes very precisely the structures of high-nitrogen 
N-heteroaromatics, with both consecutive and isolated nitrogen atoms, and their 
thermodynamic properties.
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Introduction

In order to characterize the explosive properties of high-nitrogen energetic 
compounds, their heats of formation, either in the gas or the solid state, are 
commonly used.  Their relationship to the number of nitrogen atoms involved 
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is commonly known, thus exploring this can not furnish any new information.  
However, the very promising quantitative structure property relationship (QSPR) 
approach utilizes the molecular surface electrostatic potential V(r) that is created 
by the nuclei and electrons of a molecule in the surrounding space.  The molecular 
electrostatic potential V(r) has proven to be an effective guide for describing the 
molecule’s reactive behavior. V(r) is the potential that is created by the molecule´s 
nuclei and electrons at any point r, and is given rigorously by:

( )( ) r´ r´r
R r r´ r

A

A A

Z dV ρ
= −

− −∑ ∫  (1)

where: ZA is the charge on nucleus A, located at RA, and ρ(r) is the molecule’s 
electron density.  The value of V(r) in a given region can be either positive 
or negative, and depends upon the dominating contributions of either nuclei 
or electrons.  The molecular surface electrostatic potential is a fundamental 
property, which has an influence on the behavior of the whole molecule [1-3].  
The features of the molecular surface electrostatic potential can be used to 
establish quantitative expressions for the heat of sublimation, thus permitting the 
gas phase heats of formation of high-nitrogen, energetic (and other) materials to 
be converted to the more useful solid phase values.  Since these procedures are 
carried out computationally, they can be applied to the assessment of proposed 
target compounds as well as to those that have already been prepared [3].

Our research was focused on the characterization of the molecular surface 
electrostatic potential and gas phase heat of formation of 12 heteroaromatic 
azines and 10 azoles which are often important components of high-nitrogen, 
energetic materials [4-6].

Calculations

The gas phase enthalpies of formation ∆f H°(298,g) (HOF) of the 12 azines 
and 10 azoles studied, whose structures and names are shown in Figures (1) and 
(2), were calculated by means of the SPARTAN’10 program [7]. 



105The Relationship Between the Heats of Formation and the Molecular Electrostatic...

N
N

N N

N

N

N

N

N

N N

N
N
N N

N
N

N
N

N
N

N
N
N

NN

N
N

N

N
N
N

N
N

N

N
N
N

N

PY 12-DA 13-DA 14-DA 123-TA 124-TA

135-TA 1234-TE 1235-TE 1245-TE PE HE

Figure 1. Structures and names of the azines studied. 
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Figure 2. Structures and names of the azoles studied.

The DFT method was used with B3PW91 combination of the functional 
[8] and cc-pVTZ basis set [9].  The gas phase heats of formation ∆f H°(298,g) 
were subsequently obtained (see the SPARTAN’10 program algorithm) by the 
isodesmic reactions approach [9] from theoretical B3PW91/cc-pVTZ reaction 
enthalpies ∆r H°(298) and experimental values [10] by:

∆f H°(298, g)  = ∆(∆f H°(298, g)) exp - ∆r H°(298) (2)

The molecular surface electrostatic potentials VS(r) (ESP) were calculated at 
the DFT B3LYP/6-31(d,p)// B3PW91/cc-pVTZ level and the molecular surface 
was taken to be the 0.001 e·au-3 contour of the electron density [11].  Values of 
the molecular surface electrostatic potentials were calculated in the following 
way: 10 values in the center of the heteroaromatic ring VS (ring) were selected 
and then averaged [12-14]; they are shown in Table 1.
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Results and Discussion

The gas phase heats of formation ∆f H°(298,g) shown in Table 1 were 
calculated as described in the previous section by means of the isodesmic 
reactions approach [15-18].  These data confirm the general idea that increasing 
the number of nitrogen atoms causes a positive increase in the value of the 
HOFs.  The N-N consecutive azines appear to be the most energetic compounds 
studied, which is apparent for example in the triazines, where 123-TA shows 
the highest HOF.  The same applies even to the azoles, where 123-TAZ is the 
most energetic isomer.

The HOFs are the most used parameters for describing both the 
thermodynamic and the energetic properties of HNEMs.  Nevertheless, 
additional descriptors are needed and the molecular surface ESP seems to 
be a very promising characteristic [1-3, 19, 20].  We calculated both positive 
VS,max and negative VS,min extrema, whose respective values are given in Table 1.  
Surprisingly, their correlations with the HOFs of azines and azoles proved to be 
nonlinear.  Finally, we decided to use the ring molecular surface electrostatic 
potential VS(ring), introduced by Politzer to describe its relationship with impact 
sensitivities of nitroaromatic and nitroheterocyclic molecules [12] or, more 
recently by other workers, for bond homolytic and disproportionation energies 
of polynitroaromatic compounds [13, 14].

Table 1.  B3PW91/cc-pVTZ gas phase heats of formation ∆f H°(298,g), 
B3LYP/6-31(d,p) maxima VS,max, minima VS,min, and ring VS (ring) 
molecular surface electrostatic potentials of the azines and azoles 
studied [kJ·mol-1]

Name ∆f H°(298,g) VS,max VS,min VS (ring)
PY(a) 140.2 71.6 -163.4 -42.1
12-DA (b) 280.2 100.9 -182.8 -3.3
13-DA (c) 188.9 93.4 -143.2 5.4
14-DA (d) 206.3 70.5 -135.9 4.3
123-TA (e) 403.3 130.0 -177.8 45.8
124-TA (f) 339.0 110.5 -155.0 50.4
135-TA (g) 229.9 77.1 -116.3 56.8
1234-TE (h) 538.0 153.4 -149.1 98.1
1235-TE (i) 455.7 110.9 -141.6 104.9
1245-TE (j) 485.1 114.5 -118.4 93.5
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Pe (k) 669.5 152.8 -110.0 150.3
HE (l) 868.6 207.0 -69.4 204.3
PYR (m) 108.3 181.1 -115.5 -110.6
12-DAZ (n) 183.4 186.5 -161.6 -69.2
13-DAZ (o) 140.9 207.1 -193.2 -68.8
123-TAZ (p) 276.4 224.5 -186.9 -28.7
124-TAZ (q) 209.3 219.0 -162.0 -16.1
125-TAZ (r) 259.7 198.4 -127.0 -28.4
134-TAZ (s) 235.3 237.2 -204.8 -19.7
1234-TEZ (t) 356.2 262.0 -173.0 20.3
1235-TEZ (u) 346.3 242.2 -150.3 20.2
PEZ (v) 480.0 284.2 -129.4 64.0

In order to scrutinize the relationship between the HOF and the ring ESP, 
we constructed the linear graphs shown in Figure 3 (for azines) and in Figure 4 
(for azoles).
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Figure 3. Relationships between the VS (ring) ESPs and the gas phase HOFs 
of the azines studied.
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Figure 4. Relationships between the VS (ring) ESPs and the gas phase HOFs 
of the azoles studied.

The regression lines in Figures 3 and 4 have very similar profiles.  The 
closest correlation was achieved between the ring molecular surface electrostatic 
potentials VS(ring) and the HOFs of N-N consecutive azines and azoles.  The 
similarity between the electron density in both heterocyclic systems is further 
expressed by the close values of the corresponding slopes of the regression lines 
(azines 0.351 vs. azoles 0.476, respectively).  An important feature of the ring 
electrostatic potential VS(ring) is the ability to differentiate individual N isomers 
of azines and azoles.  The cases of an N=N grouping with another N atom or 
another N=N segment in the meta position in a molecule (124-TA, 1235-TE 
and 1245-TE) is depicted in Figure 3, and, similarly, the grouping =N-NH-N= 
(125-TAZ and 1235-TEZ) in Figure 4.  The series of isolated azines with all N 
atoms in meta (or para) positions given in Figure 3 (13-DA, 14-DA and 135-TA) 
constitutes the logical regression line with a slope of 1.014.  The behavior of 
azoles with meta located NH amino groups and another N atom as shown in 
Figure 4 (13-DAZ, 124-TAZ and 134-TAZ) is similar to isolated azines with an 
appropriate regression line slope of 0.734.  For the selected azines and azoles (see 
lines on the graphs), the graphs in Figures 3 and 4 show the dependence of the 
ring molecular electrostatic potential VS(ring) on the number and positions of the 
nitrogen atoms.  Generally, the ring molecular electrostatic potential VS(ring) is 
influenced only by the number of nitrogen atoms.  The positions of the VS(ring) 
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are depicted in Figures 5 and 6, showing maps of the molecular electrostatic 
potential VS(ring) of the azines and azoles studied.

Figure 5. Maps of the molecular electrostatic potentials VS (ring) of the 
azines studied.
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Figure 6. Maps of the molecular electrostatic potentials VS (ring) of the 
azoles studied.

Conclusion

The gas phase HOFs of 12 azines and 10 azoles were calculated by the DFT 
B3PW91/cc-pVTZ method and, using the same geometry, the ring molecular 
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surface ESP was obtained by the DFT B3LYP/6-31(d,p) method. It is shown 
that the ring molecular electrostatic potential VS(ring) is a very sensitive 
descriptor of the electronic structure and of the thermodynamic properties of 
N-heteroaromatics.  It is therefore reasonable to assume that it may be used for 
the study of high-nitrogen energetic materials composed of azine and azole units.  
The ring molecular electrostatic potential VS(ring) depends only on the number 
of nitrogen atoms, and not on their positions in the ring.
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