Central European Journal of Energetic Materials, **2011**, *8*(1), 15-24 ISSN 1733-7178

Investigation on the Electrochemistry and Cytotoxicity of Organic Nitrates and Nitroamines

Jonas ŠARLAUSKAS, Kastis KRIKŠTOPAITIS, Valė MILIUKIENĖ, Narimantas ČĖNAS, Žilvinas ANUSEVIČIUS and Algirdas ŠAIKŪNAS

Institute of Biochemistry, Mokslininkų 12, LT-08552, Vilnius, Lithuania E-mail: jonas.sarlauskas@bchi.lt

Abstract: Laboratory scale quantities of a series of organic nitrates and nitroamines were obtained by nitration with dinitrogen pentoxide in dichloromethane medium. Twenty seven synthesized compounds were explored by voltammetry methods and their cytotoxicity for mice splenocytes was evaluated. N.N'-dinitropiperazine, DINA and hexandiol-1,6-dinitrate were determined as some of the most toxic compounds. Several compounds having non-planar cyclic, bicyclic or cage structures (IHN, TNAD, DINGU, TEX) were found as less toxic, possibly due to poorer penetration through the cell membrane.

Keywords: aliphatic nitrate, nitroester, N-nitroamine, peak potential, cytotoxicity

Introduction

Organic nitrates (R-O-NO₂) and nitroamines (R_1R_2 -N-NO₂) are oxygenrich high energy compounds, used widely as propellants, explosives and rocket fuels [1, 12]. For more than a century organic nitrates have been prescribed for the treatment of stable angina, acute coronary syndromes and congestive heart failure [2]. It was determined that they are potential vasodilators which dilate both normal and abnormal coronary arteries by relaxing vascular smooth muscle [5, 6, 13]. Although organic nitrates continue to be widely used for medical therapy, their therapeutic utility is recognized as problematic one because the development of tolerance limits their clinical efficacy. Sustained administration of organic nitrates like nitroglycerin (GTN) was found to be associated with adverse effects on vascular function which appear to be mediated by an increase in the nitrate-induced generation of reactive oxygen species (ROS). The same problems were demonstrated with isosorbitol nitrate and dinitrate [3-5].

Another organic nitrate pentaerythritol tetranitrate (PETN) has also been used in the therapy of angina. Investigation on the animals showed that the continuous therapy with PETN does not cause increased free radical generation or hemodynamic tolerance. PETN, in contrast to all other organic nitrates, is able to up-regulate enzymes with a strong antioxidative capacity thereby preventing the tolerance and development of endothelial dysfunction [5-6].

Thus, the investigation of the reductive bioactivation and free radical formation processes of organic nitrates are very important for the understanding of mechanisms of their positive and negative effects on human health [9, 10, 17-20].

On the other hand, organic nitrates and aliphatic N-nitroamines are manufactured in massive quantities as HEMs for military and civilian applications. Production of such large quantities of these compounds causes water and soil pollution in the manufacturing areas and increases occupational hazards [19, 21-24]. During our research of high energy materials [14, 15] we have synthesized a number of mono-, di- or polynitrates and N-nitroamines possessing various aliphatic, alicyclic and cage (isowurtzitane-type) structures.

The aim of this study is a preliminary investigation of the electrochemical and cytotoxic properties of series of representatives from both groups of nonaromatic nitrocompounds, varying in chemical structures. It was attempted to define the relationships between electrochemical parameters, different calculated molecular characteristics and toxicity of selected compounds.

Materials and Methods

Synthesis of the nitrates and nitroamines was carried out by means of the reaction of starting aliphatic/alicyclic hydroxyl- and aminoderivatives with N_2O_5 in CH₂Cl₂ medium at -15 to +15 °C temperature. The obtained nitrates and nitroamines (1-27) were identified by TLC, IR and NMR spectroscopy and used for electrochemical investigations. Voltammetric experiments were performed using Parstat 2273 (Princeton Applied Research) potentiostat controlled by Power Suite electrochemical software. Glassy carbon (Princeton Applied Research, diameter 2 mm) working electrode, saturated Ag/AgCl (+205 mV vs. NHE) reference electrode, and Pt wire (56 mm²) auxiliary electrode were used

in a standard three-electrode scheme. The glassy carbon electrode was polished with a suspension of alumina powder (1 μ m), and then rinsed thoroughly with deionized water. The anaerobic conditions were obtained by purging the solutions (0.05 M K-phosphate + 0.1 M KCl, pH 7.0, 25 °C, compound concentration, 0.4-1.0 mM) with argon for 20 min. Stock solutions of compounds (0.1 M) were prepared in DMSO. Calculation of molecular properties was done using chemical software ACDLabs (Advanced Chemical Development, Toronto).

Results and Discussion

Because of the typical electrode fouling during the repetitive scans in the presence of nitrocompounds, only the electrochemical parameters referring to the first scan are presented in this work. Structures and chemical names of synthesized compounds are listed in Table 1. Voltammetric characteristics of nitrates and nitroamines are presented in Table 2.

No.	Structure of tested compound	Name	Brutto formula	Mw
1.	H ₃ C ^{NO} 2	ethylnitrate	C ₂ H ₅ NO ₃	91.07
2.	O ₂ N NH ₂ NH ₂	nitroguanidine, (NQ)	CH ₄ N ₄ O ₂	104.07
3.	O ₂ N _N H NO ₂	1,2-ethandinitramine, (EDNA)	$C_2H_6N_4O_4$	150.09
4.	O ₂ N ₀ O _{NO2}	1,2-ethanediol dinitrate, (EGDN)	$C_2H_4N_2O_6$	152.06
5.	O ₂ N _O O _{NO2}	1,2-propandiol dinitrate	C ₃ H ₆ N ₂ O ₆	166.09
6.	O2N-N N-NO2	N,N'-dinitro- piperazine, (DAZIN)	C ₄ H ₈ N ₄ O ₄	176.13
7.	O ₂ N _O O _{NO₂}	1,2-butanediol dinitrate	C4H8N2O6	180.12

 Table 1.
 Structures and chemical names of synthesized compounds

No.	Structure of tested compound	Name	Brutto formula	Mw	
8.	O ₂ N CH ₃ NO ₂	1,3-butandiol dinitrate	$C_4H_8N_2O_6$	180.12	
9.	O ₂ N ₀ 0 _{NO2}	1,4-butanediol dinitrate	$C_4H_8N_2O_6$	180.12	
10.	H ₃ C O NO ₂ N NO ₂	1,2-pentanediol $C_5H_{10}N_2O_6$		194.15	
11.	0 ² N ₀ 0 0 ^{NO} 2	diethylene glycol dinitrate	$C_4H_8N_2O_7$	196.12	
12.	$\begin{array}{c} O \\ O_2 N_{N} \\ CH_3 O \\ \end{array} \begin{array}{c} O \\ N \\ N \\ NO_2 \end{array}$	N,N'-dinitro-N,N'- dimethyloxamide	N'-dinitro-N,N'- imethyloxamide $C_4H_6N_4O_6$		
13.	H ₃ C ^O O O ₂ N ^O NO ₂	1,2-hexanediol dinitrate	$\frac{\text{diol}}{c_6H_{12}N_2O_6}$		
14.	0, NO ₂	1,6-hexanediol dinitrate	$C_6H_{12}N_2O_6$	208.17	
15.	O ₂ N _N NO ₂	1,3,5-trinitro- perhydro-1,3,5- triazine, (RDX)	C ₃ H ₆ N ₆ O ₆	222.12	
16.	O ₂ N ^O O ^{NO} 2 O-NO2	1,2,3-propantriol trinitrate (nitroglycerine)	C ₃ H ₅ N ₃ O ₉	227.09	
17.	O ₂ N-N O ^{NO₂}	dinitroxydiethyl- nitramine, (DINA)	roxydiethyl- itramine, (DINA) C4H8N4O8		
18.	$O_2N O O_2N O O_2 O_2N O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	erythritol tetranitrate, (ETN)	C4H6N4O12	302.11	
19.	$O_2 N^O O^{-NO_2} O_{NO_2} O$	pentaerythritol tetranitrate, (PETN)	C5H8N4O12	316.14	

No.	Structure of tested compound	Name	Brutto formula	Mw
20.	$ \begin{array}{c} H \\ O = \\ N \\ O_2 N \\ H \end{array} $ NO ₂	1,4-dinitro-3,3a,6,6a- tetrahydroimidazo [4,5-d]imidazole-2,5- dione, (DINGU)	C4H4N6O6	232.11
21.	O O O O O O O O O O O O O O O O O O O	4,10-dinitro- 4,10-diaza- 2,6,8,12-tetraoxa- isowurtzitane, (TEX)	C ₆ H ₆ N ₄ O ₈	262.14
22.	$O_2 N N O_2 N N O_2 O_2 N N O_2 O_2 N N O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	octahydro-1,3,5,7- tetranitro-1,3,5,7- tetrazocine, (HMX)	C4H8N8O8	296.16
23.	O ₂ N-N N-NO ₂ O ₂ N-N N-NO ₂	trans-1,4,5,8- tetranitro-1,4,5,8- tetraazadecalin, (TNAD)	$C_6H_{10}N_8O_8$	322.19
24.	$\begin{array}{c} O_2 N_{O} & O \\ O_2 N^{O} & O & O_{NO_2} \\ O_2 N^{O} & O & O_{NO_2} \end{array}$	diglycerol tetranitrate	$C_6H_{10}N_4O_{13}$	346.17
25.	$O_2N O O NO_2 O_2N O O NO_2 O_NO_2 $	xylitol pentanitrate	C5H7N5O15	377.14
26.	$O_2 N - O_2 O_2$	inositol hexanitrate, (IHN)	$C_6H_6N_6O_{18}$	450.14
27.	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	mannitol hexanitrate, (MHN)	$C_6H_8N_6O_{18}$	452.16

Cytotoxicities of selected organic nitrates and nitroamines were determined for primary mice splenocytes. Stock solutions of compounds were prepared in DMSO. Due to low solubility of several compounds (11-13, 21, 22) after dilution with water only tentative CL_{50} values were determined.

No.	Name	Calc. Log P (ACDLabs)	Calc. VdW volume (molecule volume, Å ³)	Calc. polar surface area of the molecule. (PSA)	E _{pred} , mV (Ag/AgCl, 50 mV/s), pH 7.0	Cyto- toxicity for spleno- cytes CL ₅₀ , (µM)
1.	ethylnitrate	1.32	78.32	55.06	-1075	94
2.	nitroguanidine, (NQ)	-1.19	81.81	110.23	***	250
3.	1,2-ethandinitramine, (EDNA)	-0.60	117.71	115.70	***	62.5
4.	1,2-ethanediol dinitrate, (EGDN)	1.57	110.88	110.12	-634	>250
5.	1,2-propandiol dinitrate	1.84	127.28	110.12	-768	156
6.	N,N'- dinitropiperazine	-0.25	141.24	98.12	-1103	47
7.	1,2-butanediol dinitrate	2.44	144.27	110.12	-1300	85
8.	1,3-butanediol dinitrate	2.44	144.27	110.12	-1280	157
9.	1,4-butanediol dinitrate	2.44	144.27	110.12	-1230	52
10.	1,2-pentanediol dinitrate	2.99	161.07	110.12	-863	175
11.	diethylene glycol dinitrate	1.37	153.46	119.35	-705	>250
12.	N,N'-dinitro-N,N'- dimethyloxamide	-1.47	155.96	132.27	***	>250
13.	1,2-hexanediol dinitrate	3.50	177.87	110.12	-883	>250
14.	1,6-hexanediol dinitrate	3.50	177.87	110.12	-1076	28
15.	1,3,5-trinitroperhydro- 1,3,5-triazine, (RDX)	-0.50	160.55	147.19	-976 -554	140
16.	1,2,3-propantriol trinitrate (nitroglycerine)	2.19	160.02	165.14	-1007	187

Table 2.Evaluated molecular properties, peak potentials and cytotoxicity for
mice splenocytes of synthesized nitrates and nitroamines

No.	Name	Calc. Log P (ACDLabs)	Calc. VdW volume (molecule volume, Å ³)	Calc. polar surface area of the molecule. (PSA)	E _{pred} , mV (Ag/AgCl, 50 mV/s), pH 7.0	Cyto- toxicity for spleno- cytes CL ₅₀ , (µM)
17.	dinitroxydiethyl- nitramine, (DINA)	1.36	180.60	159.18	-835 -1101	18
18.	erythritol tetranitrate, (ETN)	2.81	209.17	220.23	-847	175
19.	pentaerythritol tetranitrate, (PETN)	2.90	225.62	220.23	-770	38
20.	1,4-dinitro-3a,6,6a- tetrahydroimidazo [4,5-d]imidazole- 2,5-dione, (DINGU)	-1.14	159.62	156.32	-1104	350
21.	4,10-dinitro-4,10- diaza-2,6,8,12- tetraoxa- isowurtzitane, (TEX)	-0.88	155.43	134.59	-1200	>250
22.	octahydro-1,3,5,7- tetranitro-1,3,5,7- tetrazocine, (HMX)	-0.73	213.47	196.25	-998	>250
23.	trans-1,4,5,8- tetranitro-1,4,5,8- tetraazadecalin, (TNAD)	-0.86	236.29	186.24	***	250
24.	diglycerol tetranitrate	2.79	251.76	229.47	-565 -738	59
25.	xylitol pentanitrate	3.42	258	275.29	-960	148
26.	inositol hexanitrate, (IHN)	3.87	296.67	330.35	-780	200
27.	mannitol hexanitrate, (MHN)	4.038	307.46	330.35	-830	109

*** Peak potential was not determined due to low solubility.

Figure 1. Cyclic voltamperograms of some aliphatic and alicyclic nitrates: 1 – diglycerol tetranitrate (21), 2 – ethyl nitrate (1) and 3 – inositol hexanitrate (26).

In general, some of the tested alicyclic or cage compounds, as (26, IHN) or (20-23), having non-planar structure are less toxic for the cells (200-350 μ M), possibly due to poor penetration through the cell membrane, as illustrated by IHN example below (Figure 2).

Figure. 2. 3D image of the molecule of inositol hexanitrate (26, INH), demonstrating a non-planar O-nitro groups arrangement, which is very important for biological properties, including toxicity.

Conclusions

In this work we have determined peak potentials of 27 synthesized organic nitrates and nitroamines. Their peak potentials varied from -1300 mV for 1,2-butanediol dinitrate to -554 mV for RDX. A determined cytotoxicity for mice splenocytes varied considerably, from 18 μ M (17, DINA) to 350 μ M (20, DINGU). In general, some of the tested alicyclic, bicyclic or cage compounds, as (26, IHN) or (20-23), having a non-planar structure and an increased molecule volume are less toxic for the cells. After comparison of all determined characteristics of selected compounds we have found a very slight tendency for cytotoxicity of compounds to increase with an increase in hydrophobicity. Correlations of other molecular parameters were not defined.

Acknowledgement

This work was supported in part by the Research Council of Lithuania, COST programs CM0603 and CM0801.

References

- Akhavan J., *The Chemistry of Explosives*, 2th ed, RSC Publishing, Cambridge, UK, 2004, 125-137.
- [2] Livertoux L.H., Lagrange P., Mina A., The Superoxide Production Mediated by the Redox Cycling of Xenobiotics in Rat Brain Microsomes is Dependent on Their Reduction Potential, *Brain Res.*, **1996**, 725, pp. 207-216.
- [3] Wong P.S-Y., Fukuto J.M., Reaction of Organic Nitrate Esters and S-Nitrosothiols with Reduced Flavins: A Possible Mechanism of Bioactivation, *Drug Metab. Dispos.*, **1999**, *27*, 502-509.
- [4] Meah Y., Brown B. J., Chakraborty S., Massey V., Old Yellow Enzyme: Reduction of Nitrate Esters, Glycerin Trinitrate and Propylene 1,2-Dinitrate, *Proc. Natl. Acad. Sci. USA*, 2001, 98(15), 8560-8565.
- [5] Marsh N., Marsh A., A Short History of Nitroglycerine and Nitric Oxide in Pharmacology and Physiology, *Clin. Exp. Pharmacol. Physiol.*, 2000, 27(4), 313-319.
- [6] Fox K., Garcia M.A.A., Ardissino D. et al., Guidelines on the Management of Stable Angina Pectoris, *Europ. Heart J.*, 2006, 34-37.
- [7] Daiber A., Wenzel P., Oelze M., Münzel T., New Insights into Bioactivation of Organic Nitrates, Nitrate Tolerance and Cross-Tolerance, *Clin. Res. Cardiol.*, 2007, 97(1), 12-20.
- [8] Jonsson U.E., Development of Long-acting Nitrate Delivery Systems, *Eur. J. Clin. Pharmacol.*, 1990, 38, 15-19.

- [9] Wardman P., Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution, *J. Phys. Chem. Ref. Data*, **1989**, *18*, 1637-1755.
- [10] Zuman P., Fijalek Z., Contribution to the Understanding of the Reduction Mechanism of Nitrobenzene, J. Electroanal. Chem., 1990, 296, 583-588.
- [11] Bhushan B., Halasz A., Hawari J., Nitroreductase Catalyzed Biotransformation of CL-20, *Biochem. Biophys. Res. Commun.*, 2004, 322(1), 271-276.
- [12] Agrawal J.P., Hodgson R., Organic Chemistry of Explosives, Wiley Intersci., N.Y. 2007, pp. 87-98.
- [13] Abraham D.J. (Ed.) Cardiovascular Agents and Endocrines, in: Burger's Medicinal Chemistry and Drug Discovery, Wiley-Intersci., N.Y., 2003, 3, 111-134.
- [14] Šarlauskas J., Nivinskas H., Anusevičius Ž., Misevičienė L., Marozienė A., Čenas N., Estimation of Single-Electron Reduction Potentials (E¹₇) of Nitroaromatic Compounds According to Kinetics of Their Single-Electron Reduction by Flavoenzymes, *Chemija*, **2006**, *17*, 31-37.
- [15] Čenas N., Nemeikaitė-Čenienė A., Šarlauskas J., Anusevičius Ž., Nivinskas H., Misevičienė L., Marozienė A., Mechanisms of Mammalian Cell Cytotoxicity of Explosives, in: *Ecotoxicology of Explosives*, CRC Press, Boca Raton-London-N.Y. 2009, 211-226.
- [16] Williams R.E., Rathbone D.A., Scrutton N.S., Bruce N.C., Biotransformation of Explosives by the Old Yellow Enzyme Family of flavoproteins, *Appl. Environ. Microbiol.*, 2004, 70, 3566-3574.
- [17] Woody R.C., Kearns G.L., Brewster M.A., Turley C.P., Sharp G.B., The Neurotoxicity of Cyclotrimethylenetrinitramine (RDX) in a Child; A Clinical and Pharmacokinetic Evaluation, *Clin. Toxicol.*, **1986**, *24*, 309.
- [18] Stone W.J., Paletta T.L., Helman E.M., Bruce J.I., Knepshield J.H., Toxic Effects Following Ingestion of C4 Plastic Explosives, *Arch. Intern. Med.*, **1969**, *124*, 726.
- [19] Barsotti M., Crotti G., Epileptic Attacks as Manifestations of Industrial Intoxication Caused by Trimethylenetrinitramine (T4). *Med. Lavoro*, **1949**, *40*, 107.
- [20] Kaplan A.S., Berghout C.F., Peczenik A., Human Intoxication from RDX, Arch. Environ. Health, 965, 10, 877.
- [21] Merrill S.L., Ingestion of an Explosive Material Composition C4, USARV Med. Bull, 1968, 3, 5.
- [22] Hollander A.I., Colbach W.M., Composition C-4 Induced Seizures; A Report of Five Cases, *Milit. Med.*, 1962, 134, 1529.
- [23] Ketel W.B., Hughes J.R., The Encephalopathy with Seizures Secondary to Ingestion of C-4, *Neurology*, **1972**, 22, 871.
- [24] Tsa M.T., Lee J., Food Poisoning Caused by Hexogen: A Report of Eight Cases, *Chin. J. Prev. Med.*, 1982, 16, 229.