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Abstract: Crystal density is a basic and important parameter for predicting
the detonation performance of explosives, and nitrate esters are a type
of compound widely used in the military context. In this study, thirty-one aliphatic
nitrates were investigated using the density functional theory method (B3LYP)
in combination with six basis sets (3-21G, 6-31G, 6-31G*, 6-31G**, 6-311G*
and 6-31+G"") and the semiempirical molecular orbital method (PM3).
Based on the geometric optimizations at various theoretical levels, the molecular
volumes and densities were calculated. Compared with the available experimental
data, the densities calculated by various methods are all overestimated,
and the errors of the PM3 and B3LYP/3-21G methods are larger than those of other
methods. Considering the results and the computer resources required
by the calculations, the B3LYP/6-31G* method is recommended for predicting
the crystalline densities of organic nitrates using a fitting equation. The results
obtained with this method are slightly better than those reported by Keshavarz
and Rice. In addition, the effects of various groups (such as -ONO,, -OH, —CI,
—O-, and —CH,-) on the densities are also discussed, which is helpful for the design
of new molecules in terms of practical requirements.
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Nomenclature:

D difference between the predicted and experimental densities [g-cm ]
V' molecular volume [cm?-mol ]

p crystalline density [g-cm]

1 Introduction

Currently, the study of novel high energy density materials (HEDMs) is one of
the most active regions of research and seems to be never ending because of
the superior explosive performances of HEDMs compared to the currently used
materials [1-3]. Density is a primary physical parameter, closely related to the
explosive performances such as detonation velocity and pressure, explosion heat,
and specific volume. Since detonation velocity and detonation pressure increase
proportionally with the density and the square of the density, respectively [4, 5],
improving the density is the main approach to discovering new HEDMs at present.
It is thus very important to obtain the density of proposed new compounds.

Among the methods previously used to predict the crystalline density (pexp)
of explosives, the simplest, earliest and most widely used one is the group
additivity method of the molar refraction [5] and the molar volume [6, 7],
where the molar volume is obtained by summing up the volumes of atoms
or functional groups. These methods can rapidly predict the volume and density.
However, they have limitations in accounting for the molecular conformation,
isomerization, and crystal packing efficiency.

Researchers [8-13] have also been attempting to use the potential function
and crystal chemistry methods, based on the dense packing theory, to predict
crystalline densities more accurately. These approaches can effectively account
for the influence of the molecular spatial arrangement, but they require extensive
computational work and take more computer time and higher costs, which makes
it difficult for wide application.

Keshavarz et al. [14-21] developed some new correlations to predict
explosive parameters simply from the number of carbon, hydrogen and nitrogen
atoms and other structural parameters for nitroaromatic and nitroaliphatic
compounds, acyclic and cyclic nitramines, nitrate esters, polynitro arene
and polynitro heteroarene explosives, efc.

In order to better account for the intermolecular interactions in C,H,O,N crystals,
Politzer et al. [22, 23] developed a procedure with an electrostatic interaction
correction to predict the crystalline densities for both neutral and ionic molecular
crystals at the B3PW91/6-31G** level of density functional theory (DFT),
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and reported two equations (viz. Equations 1 and 2) to predict the crystalline
densities of neutral molecules:

M
p=a =+ fi(vo, ) +7, (1)

m

p=a, Vﬂ +4,dD+y, )

m

where M is the molecular weight, V;, is the volume inside the 0.001 a.u. isosurface
of electron density surrounding the molecule, calculated at the B3PW91/6-
31G** level, o and [] are the total and the average deviation variances
of the electrostatic potential on the 0.001 a.u. surface, v is an electrostatic
balance parameter, a,, 51, y1, and o, f2, 7, are coefficients which are available
from Ref. [22].

Later, Rice et al. [24] used the procedure of Politzer et al. [22, 23] to predict
the crystalline densities of neutral and ionic compounds at the B3LYP/6-
31G** level. In recent years, our group has proposed a new efficient method
to predict the density (pca) based on the quantum chemistry calculation
of molecular volume. This method has been widely used in calculating
the detonation properties of the organic cage compounds and heterocyclic
nitramines, and plays an important role in “molecular design” of high energy
density compounds (HEDCs) and materials (HEDMs) [25-31].

Qiu et al. [32] performed a quantum chemistry study on 45 energetic
nitramines and compared the calculated density p., with the experimental
value peyp. They found that, on the whole, p.a calculated at the B3LYP/6-
31G™ level of the density functional theory (DFT) accords with p.,, whereas using
the B3LYP functional with a larger basis set underestimates p.,i, and the densities
are all overestimated by the semiempirical molecular orbital methods.

Is this conclusion applicable for other kinds of explosives? For various
kinds of explosives, do the densities calculated by different methods
have such regularities? In view of these problems, we have further researched [33]
thirty nitro aromatic compounds using the B3LYP functional of DFT with six
basis sets and the semiempirical PM3 method. It was found that p., estimated
by the PM3 and B3LYP/3-21G methods are all larger than p.,, and those obtained
with the other five basis sets are better and quite accurate. Considering that
a larger basis set demands more computer resources, B3LYP/6-31G or B3LYP/6-
31G* is recommended to rapidly and reliably predict the crystalline densities
of polynitroarenes.
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To further test the reliability and applicability of our conclusions, another
important kind of compound, namely aliphatic nitrates (see Figure 1 for the
structural diagrams) is studied in detail in this paper. Aliphatic nitrates, such as
methyl nitrate (MN), ethylene glycol dinitrate (EGDN), nitroglycerine (NG),
butanetriol trinitrate (BTTN), pentaerythritol tetranitrate (PETN), etc., as a type
of multifunctional material, have been receiving considerable attention and many
investigation [34-37]. Various theoretical methods are used. The results from
different methods are compared and the effects of the methods on the densities
are discussed. The conclusions may be useful for the molecular design and further
studies of novel HEDMs.
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Figure 1. Illustration of the molecular structures of the aliphatic nitrates

2 Computational Method

Thirty-one aliphatic nitrates were fully optimized without any symmetry restrictions
with the semiempirical PM3 [38] method and the B3LYP functional [39, 40]
of DFT with the 3-21G, 6-31G, 6-31G*, 6-31G**, 6-311G* and 6-31+G™
basis sets [41-45]. To characterize the nature of the stationary points,
harmonic vibrational analyses were performed on each optimized structure,
which demonstrated that all of the optimized structures are local energy
minima on the potential energy surface (PES) without presentation
of the imaginary frequency.

The density of each compound was obtained from the molecular weight (M)
divided by the volume (V). The volume is defined as the space inside
the 0.001 e/bohr? electron density surface and obtained from the statistical average
of 100 volume calculations using the Monte-Carlo method with the Gaussian03
program package [46].
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3 Results and Discussion

3.1 Effect of the method on density

Tables 1 and 2 lists the molecular volume (V) and density (p..), respectively,
predicted with the different methods and basis sets. For comparison,
the corresponding experimental density (pey), €rror, and root mean square
error (Rms) are also listed in Table 2.

The data in Table 1 show that the volumes obtained from PM3 and B3LYP/3-
21G are smaller than those from other methods. On the whole, the larger
the basis set (from 6-31G to 6-31+G™), the larger the volume, i.e. a larger
basis set makes the occupied space of the electrons larger. In addition, we also
found that the volumes increased with an increasing number of -ONO,, —OH,
—Cl, —CH,—, -N—-NO,, and —CHj; groups, obviously showing group additivity.
For Me-NENA (27), Et-NENA (28), Pr-NENA (29), Bu-NENA (30), and Pt-
NENA (31), the volumes obtained from various DFT methods increase
with an increasing number of methylene (—CH,—) groups, and there are good
linear correlations. For example, for the B3LYP/6-31G" method, the correlation
equation (Equation 3) is:

7'=102.55 + 13.78n 3)

and the corresponding correlation coefficient is 0.9986. Besides, the differences
in volume between the isomers, such as between n-PN (4) and iso-PN (5),
and between 1,3-PGDN (6) and 1,2-PGDN (7) (see Table 1), is small, indicating
that the space orientations of the substituent groups have little influence
on the volume. To show the variation of V" with different methods and basis sets
more clearly, Figure 2 is presented to show the correlations between the structures
and Vs obtained with the different methods.
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Correlations between structures and volumes calculated
by various methods

Unlike the nitramines [32] and nitroaromatic compounds [33], for all aliphatic
nitrates, the densities calculated by various methods (p.a) are all overestimated,
i.e. the theoretical densities are larger than the experimental data, with the average
absolute errors of PM3 (0.39) and B3LYP/3-21G (0.35) being larger
than those of the other methods (0.18~0.22), which indicates that the 6-31G,
6-31G*, 6-31G**, 6-311G*, and 6-31+G™ basis sets are more suitable
for nitrates. Figure 3 presents the error analysis of the densities calculated
with the B3LYP functional and these five basis sets. It is obvious that the errors
for PETN (24) and Me-NENA (27) are extraordinarily small (< 0.1) while those
of the other 29 aliphatic nitrates are larger than 0.1.
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Figure 3. Error analysis of the densities calculated with the B3LYP functional
and various basis sets

Table 3 displays the relationships and the corresponding correlation
coefficients (R) between the predicted densities with these five basis sets
and the experimental densities. For all 31 compounds (set I), the correlation
coefficients were 0.9425, 0.9469, 0.9357, 0.9417 and 0.9330, respectively.
When the two compounds (24 and 27), which have abnormally small calculation
errors, were excluded (set I1), the Rs were improved to 0.9641, 0.9682, 0.9584,
0.9601 and 0.9565, respectively. This suggests that these five basis sets
can be used to accurately predict the crystalline densities of aliphatic nitrates
using the fitting equations.
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Table 3.  Correlations between the predicted and experimental densities®

Method Set1(1-31) Set 11 (1-23, 25, 26, 28-31)°

pear=0.5356 +0.7634pe, | pea = 0.4567 + 0.8247pe,
B3LYP/6-31G  |R=0.9425 R=0.9641

SD =0.0517 SD = 0.0420

Peat = 0.5419 + 0.776Tpexp | peat = 0.4768 + 0.8283pexy
B3LYP/6-31G* |R =0.9469 R = 0.9682

SD = 0.0504 SD = 0.0396

pear = 0.5724+0.746Tpexy | pear = 0.5006+ 0.803 1pexy
B3LYP/6-31G** |R =0.9357 R =0.9584

SD = 0.0538 SD = 0.0442

et = 0.5070 + 0.7826pexy | peat = 0.4451+ 0.8317peyy
B3LYP/6-311G* |R=0.9417 R =0.9601

SD = 0.0534 SD = 0.0448

Peat = 0.5754 +0.7220p0xp | peas = 0.5011 + 0.7801 e
B3LYP/6-31+G** |R = 0.9330 R = 0.9565

SD = 0.0532 SD = 0.0440

@ R and SD denote the correlation coefficient and standard deviation, respectively
©1-31 present the serial numbers of the compounds listed in Table 2

According to our results, B3LYP/6-31G* gives the best results,
with B3LYP/6-31G leading to the next best results; they require comparatively
less computer resources than other methods, therefore, using B3LYP/6-31G*
or B3LYP/6-31G is a good choice to rapidly and accurately predict the crystalline
densities of aliphatic nitrates. Taking B3LYP/6-31G and B3LYP/6-31G*
as examples, Figure 4 shows good correlations between the experimental
and theoretical densities for 29 listed compounds (1-23, 25, 26, 28-31).
The correlation equations are:

pear=0.4567 + 0.8247perp 4)
pear=0.4768 + 0.8283pexp (5)
Pop =—0.4153 + 1.127 1 pea (6)
Pop =—0.4514+ 1.1318p.y (7)

Equations 6 and 7 can be used to estimate the experimental density
from the theoretical density calculated at the B3LYP/6-31G and B3LYP/6-
31G* levels, respectively.
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Figure 4. Correlations between the experimental and theoretical densities
of the 29 compounds (1-23, 25, 26, 28-31) at the B3LYP/6-31G
and B3LYP/6-31G* levels

Table 4 lists the predicted crystalline densities of the 31 nitrates using
these equations. To test the reliability of our method, the methods developed
by Keshavarz [17] and Politzer [22] have also been adopted to predict the crystal
densities of the same nitrates. The densities (pk) estimated with the Keshavarz’s
method [17] using Equation 8 are also listed in Table 4. Since the densities
of'the title compounds in this paper were calculated using the B3LYP functional
with the different basis sets, viz. 6-31G* and 6-31G**, the densities (pr) predicted
by Rice [24] with Equation 9 are also presented in Table 4.

px=1.521 + 6.946a/M — 11.53b/M + 20.10c/M — 0.1559E+ 0.1325E; (8)
pr = 1.0462pe + 0.0021va? — 0.1586 (9)

where a, b and ¢ in Equation 8 are the numbers of carbon, hydrogen
and nitrogen atoms, respectively; the values of £, and E;, which are specified
based on the molecular structures, were taken from Ref. [17]. pca in Equation 9
is equal to M/V, with V' being produced at the B3LYP/6-31G** level (see Table 1).

It can be seen from Table 4 that the average absolute errors (0.04)
and root mean square errors (0.05) of the densities predicted with Equations 6 and 7
are significantly reduced in comparision with those in Table 2.
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Compared with the results from Keshavarz’s method (0.05, 0.07)
and Rice’s method (0.18, 0.19), the present method is slightly better,
which indicates that it is reliable and credible to predict pe, using the fitting
equations at the B3LYP/6-31G and B3LYP/6-31G* levels.

3.2 Effect of molecular structure or substituent groups on density
Data in Table 4 show that the variation in the densities at the B3LYP/6-31G
and B3LYP/6-31G" levels is basically consistent. Here, we discuss the effect
of structure using the B3LYP/6-31G" results. On the whole, p’.,, obtained
using Equations 6 and 7, increases with an increasing number of —ONO, groups
in the molecule, such as EN (1.17 g-cm™®) and EGDN (1.53 g-cm™);
n-PN (1.07 g-cm™), iso-PN (1.10 g-cm™), 1,3-PGDN (1.40 g-cm™),
1,2-PGDN (1.38 g-cm™), and NG (1.57 g-cm™); 1,2-BGDN (1.33 g-cm™),
1,2,4-BTTN (1.51 g-ecm™), and ETetN (1.68 g-cm™). This also indicates that
the differences between the p’,s of the isomeric compounds, e.g. n-PN and iso-
PN, and 1,3-PGDN and 1,2-PGDN, is very small.

In addition, p’«, also increases with an increasing number of —OH,
—Cl and —O- groups. For example, p’.,s of 1,3-PGDN (6) and GDN (9),
1,2-PGDN (7) and GCDN (10) are 1.40 and 1.50 g-cm™, 1.38 and 1.52 g-cm3,
respectively. However, when more —CH,— groups are introduced, p’., decreases.
This can be found with MN (1.31 g-em ™) and EN (1.17 g-cm3), and also with Me-
NENA (27), Et-NENA (28), Pr-NENA (29), Bu-NENA (30), and Pt-NENA (31),
for which the p., valuesare 1.59, 1.56, 1.49, 1.43, and 1.40 g-cm3, respectively,
and the pey, values are 1.53, 1.32, 1.26, 1.21, and 1.18 g-cm™, respectively.
With the increase in the number of —CH,— groups from compound (27)
to compound (31), the density decreases consecutively by 0.03, 0.07, 0.06,
and 0.03 g-cm™ according to p., and 0.21, 0.06, 0.05, and 0.03 g-cm™
according to Pexp. Obviously, pe, 0f (27) is abnormal. Similarly, for compounds (20)
and (24), with the increase in the number of the —CH,— groups, p.. decreases
(1.89 and 1.83 g-cm, respectively), but p., increases (1.64 and 1.77 g-cm™),
SO Pexp Of (24) is possibly abnormal too. Therefore, compounds (24) and (27)
are excluded in set I to fit the correlating equation, and the correlation coefficient
and deviation are obviously increased and reduced respectively after (24) and (27)
are excluded, in comparison with set I where all compounds are included.

In other words, the number of the —ONO, group has the biggest influence
on the density of aliphatic nitrates, and the influence of other groups is also non-
negligible. The regularity of the effect of various groups on the density
can therefore be applied in the molecular design of energetic materials.
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4

Conclusions

From this study, the following conclusions are drawn:

(1

2)

)

The densities of aliphatic nitrates calculated by various methods
are all overestimated in comparision with the experimental densities;
the methods in combination the B3LYP functional with the 6-31G, 6-31G*,
6-31G**, 6-311G*, and 6-31+G™ basis sets are comparatively better
when the fitting equations are used.

Considering the results of and the resources required for these calculations,
the B3LYP/6-31G* or B3LYP/6-31G method is recommended for predicting
the crystal densities using the fitting equations.

Densities of the aliphatic nitrates increase with an increasing number of —
ONO,,—OH, —Cl, and —O- groups, while they decrease with the number of —
CH»— groups, the —ONO, group having the largest influence on the density.
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