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Abstract: For almost three decades, the engineered nanomaterials (ENMs) due to their reactivity, 
unique sorption, catalytic, electronic, optical and magnetic properties, have been the subject 
of extensive research. The results show that these materials can provide a new tool for the remediation of 
contaminated aquatic ecosystems (surface and groundwater), sediments, soils, military training grounds 
and waste recycling areas, including electronic waste. In-situ remediation technologies using composites 
containing metal nanoparticles, mainly zero-valent iron particles (n-ZVI) are becoming more common. 
The solutions disclosed in numerous publications and patent applications show their applicability, 
higher effectiveness and lower costs of remediation processes compared to the conventional methods. 
Streszczenie: Od prawie trzech dekad inżynierskie nanocząstki (ENM’s, ang. Engineered Nano Materials) 
ze względu na wykazywaną reaktywność chemiczną, unikatowe właściwości sorpcyjne i katalityczne, 
elektroniczne, optyczne, magnetyczne są przedmiotem intensywnych badań. Uzyskane wyniki wskazują, 
że m.in. stanowią one nowe narzędzie do rekultywacji zanieczyszczonych ekosystemów wodnych (wód 
powierzchniowych i podziemnych), osadów, gruntów, poligonów oraz terenów recyklingu odpadów, 
w tym elektronicznych. Stosowanie technologii rekultywacji metodą in situ za pomocą kompozytów 
z udziałem nanocząstek metali, głównie nanocząstek zero wartościowego żelaza n-Fe(0) staje się 
coraz bardziej powszechne. Proponowane w licznych publikacjach i patentach rozwiązania wskazują 
na ich uniwersalność, większą efektywność i niższe koszty realizacji procesu rekultywacji w porównaniu 
z metodami konwencjonalnymi. 

This article is available in PDF-format, in colour, at: 
http://www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne/materialy-wysokoenergetyczne12_1/HEM_0172_E.pdf
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Symbols and abbreviations 
ACMs Asbestos Containing Materials 
BNPs Binary Nanoparticles 
CMC Carboxymethyl Cellulose 
CVD Chemical Vapour Deposition 
DNAPL Dense, Non-aqueous Phase 
ENMs Engineered Nano Materials 
Fe(0) Zero-valent iron particles 
LNAPL Light, Non-aqueous Phase Liquid 
m-Fe(0) Zero-valent iron macroparticles 
n-Fe(0) Zero-valent iron nanoparticles 
n-ZVI Zero-valent Iron nanoparticles 
NOM Natural Organic Matter 
NPs Nanoparticles 
PAA Polyacrylic Acid 
PCBs Polychlorinated Biphenyls 
PRBs Permeable Reactive Barriers 
ROS Reactive Oxygen Species 
TCE Tetrachloroethane 
WA Nuclear Waste 

αFe Particles of alpha iron allotrope
μ-Fe(0) Zero-valent iron microparticles

1. Introduction 
In previously published review studies we have presented aspects of nanomaterials used in civil and military 
applications including their origin, structure, unique properties, preparation methods, applicability and aspects 
related to their environmental release [1-3]. 
At the beginning of the 1990s, a new innovative technology was developed in the USA to eliminate the 
environmental impact by using PRBs and other active materials, mostly m-ZVI and μ-ZVI particles [4-22]. 
The idea behind this technology involves trench excavation (trenching method) perpendicular to the direction 
of groundwater flow and filling the trenches with a biodegradable slurry (e.g. guar gum based biopolymer 
as a stabilizer, zeolite-sand mixes) containing suitable ZVI micro- and macroparticles as an active material. 
The interaction of the contaminants with the active material is initiated by physical, chemical and/or biological 
processes, resulting in reduction and/or immobilization [23-31]. 
The relatively low costs of PRB technology and competitive edge compared to conventional methods: pump 
and treat, biological reclamation, phytoremediation, activated carbon sorption and others, have made it one of 
the most commonly used methods [4-23, 30, 31]. Currently in the USA, France, Belgium, Germany, Austria, 
Italy, United Kingdom, Japan, Canada, Australia, New Zealand and other countries, over a thousand PBR 
systems are currently in use, and the design, technology and active material are being constantly improved 
[6, 9, 15, 27-29, 32]. The review of PRB technology by Pawluk et al. [10] has shown that both laboratory 
and field studies, focused on the practical implementation of this innovative technology, are currently being 
carried out in Poland. 
Many studies have shown that replacing m-ZVI macroparticles and μ-ZVI microparticles with n-ZVI 
nanoparticles, significantly improves the transformation and detoxification efficiency of many contaminants, 
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both organic and inorganic, and that those particles are included in the new generation nanomaterials playing 
a key role in environmental protection [6, 9, 11, 15, 17, 22, 24, 27, 32, 33]. 
The technologies using zero-valent iron nanoparticle-based nanocomposites, both pure n-ZVI and doped 
with other metals, referred to as BNPs, are more commonly used in remediation of water ecosystems (ground 
and surface waters), sediments, waste recycling sites and soils contaminated with toxic and hazardous 
substances [5-11, 21-37]. 
They can also be used to decompose high-energy materials (explosives) and their products [38-53] 
and to deactivate nuclear waste (WA) [54-56]. Degradation and/or immobilization of the contaminants using 
ENMs is referred to as nano-remediation. 
The latest developments in ENMs synthesis and production technology, significantly reduce production 
costs and allow practical application on a large scale [15, 17, 18, 23-25, 57-61]. So called “green chemistry” 
processes, which involve replacing iron salt reducing agents incl. NaHB4, N2H4, with eco-friendly water extracts 
and infusions from natural organic matter in the n-ZVI synthesis, are of particular interest [62, 63]. 
Highly dispersed metallic particles are more commonly used in the remediation process. However, there 
are certain concerns related with their release into the environment. This is reflected in the growing number of 
publications showing the ecological hazards of their application [2, 3, 19, 62, 64-68]. 
The article presents the factors defining the practical applicability of n-ZVI-based composites, laboratory and 
field test results on their practical applicability in the contaminant reduction processes, and related hazards. 

2. n-ZVI as a component of composites for in-situ remediation of water 
ecosystems, sediments, waste recycling sites and soil 

2.1. General considerations 

Subjected to extensive laboratory and field studies, n-ZVI particles are of particular interest among metallic 
nanostructures, due to their potential applications in innovative technologies for degradation of toxic substances 
in the environment [1-3, 15, 22-24, 29, 32, 69, 70]. The particles show reductive and catalytic properties which 
classify them as the key ENMs for practical applications in environmental reclamation processes [1, 2, 15, 19, 
22-24, 29, 31, 34, 46, 63]. 
A review of the literature shows that for over 150 years, metallic iron and its oxides were considered as 
potential active agents in water treatment [71-76]. The developments in nanostructural materials allowed 
the traditional PRB reclamation methods using m-ZVI and μ-ZVI particles as an active material [6, 9, 12-
14, 18, 22, 33], to be updated. With the increase in dispersion rate of n-ZVI, its properties, including the 
efficiency of contaminant reduction and surface energy (J/m2), change significantly [15, 16, 23, 77]. This was 
confirmed by numerous research studies which showed a significant increase in the reduction of a wide range 
of contaminants, including typical contaminants, both organic and inorganic, after replacing ZVI micro- and 
macroparticles with nanoparticles [16, 23, 26, 32].
In papers on Fe(0) particles presented in literature, „reactivity” and „efficiency” are used interchangeably, 
which can be confusing because „reactivity” is an intrinsic property of all kinds of a material, but „efficiency” 
corresponds to its reactivity under given conditions [78]. For Fe(0) particles, it is not possible to directly 
determine their reactivity, however, the reactivity can be expressed indirectly with the use of a comparative 
indicator e.g. the value for iodine [79-81]. In [82], a new method of testing of the usefulness of Fe(0) metallic 
particles in remediation processess in an environment, was proposed. This method relies on the measurement of 
decoloration in a column of methylene blue (C16H18ClN3S), which is a triazine derivative 
NPs of Fe(0), in the form of a suspension (emulsion) in a hydrophobic liquid, are introduced in situ by direct 
insertion into the current of polluted surface water, groundwater, and underground water, as well as into sediments, 
toxic waste dumps or polluted areas in the ground undergoing decontamination [9], (Fig. 1). This avoids 
the application of the special construction trenches used in the PRBs’ method, mentioned above [6, 9, 12]. 
Moreover, in the case of the application of NPs of Fe(0), one can observe a lower degree of the particles’ 
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agglomeration, much higher reactivity and mobility in the medium, as well as allowing it to avoid formation 
of toxic and carcinogenic by-products, e.g. vinyl chloride (CH2=CHCl). The latter was observed during the 
reduction of organohalogen compounds [83-85]. It should be mentioned that n-Fe(0) particles have a major 
drawback which relies on their tendency to aggregate relatively quickly, resulting in limitations to the migration 
distance and finally, in decreasing the effectiveness of their application [1, 15, 16, 27, 28].

 
(a)                                                                                      (b)

 
(c)                                                                                      (d)

Figure 1. Diagram of the organohalogen contaminant mobility in soil: (a) surface soil contaminants (1 − surface 
soil layer, 2 – surface contamination area, 3 – permeable bed, 4 – bedrock, 5 – low permeability 
bed, 6 – groundwater, 7 – water intake), (b) contaminant mobility (2a) and DNAPL forming (2b); 
red arrows in Figures 1(b) and 1(c) indicate contaminant mobility in the soil, (c) LNAPL mobility (2c), 
(d) groundwater and water intake contamination

n-ZVI granulate is usually used as a composite filler in environmental remediation due to its potential to reduce 
organic and inorganic contaminants (toxic heavy metal and semi-metal ions) with simultaneous immobilisation 
(settling) [1, 16, 17, 26-30]. 
Materials based on zero-valent iron particles, i.e. ZVI with different dimensions, are currently available 
on the market, including three groups of particles [16, 24, 26]: 
a) macro (deco-, centi-, milli-) m-ZVI > 500,000 nm (500 μm),
b) micro μm-ZVI < 1,000 nm (1 μm),
c) nano n-ZVI ≤ 100 nm, with a grain size between 5 and 40 nm. 
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In recent years, a Canadian company - Golder Associates Inc. is the leader in manufacturing n-ZVI particles using 
the top-down approach, machining of solid material, grinding or size reduction in SPEX shaker mills (Sample 
Prep. 8000), Atrittor ball mills and XQM planetary ball mills [86]. Large n-ZVI manufacturers include: Toda 
Kogyo Corp. (Japan), W.-X. Zhang, Lehigh University (USA) and Fischer Scientific (USA). 

2.2. n-ZVI synthesis methods 

The latest innovations in manufacturing and synthesis of the ZVI particles, allow significant reductions in 
production costs and an increase in large-scale applications [21, 35, 77, 87-93]. Most nanostructure synthesis 
methods are based on two opposing approaches which form the basis for different synthesis methods [1, 19, 21, 
23, 25, 27, 28, 30, 34-36, 65-67]. 

2.2.1. Top-down method 

The method consistsof reducing the size of material (macro-, micro-) to the nano-scale [1, 19-21, 24, 25, 35, 67, 
86]. The synthesis methods are relatively straight forward but the disadvantage is a high surface energy of the 
particles, leading to high susceptibility to aggregation [21, 28, 35, 87]: 
a) chemical processes including etching of solid materials using aqueous acid solutions [1, 15, 17, 28, 34, 57, 
62, 88]; 
b) high-pressure magnetron sputtering gas condensation [1, 15, 34, 60, 66]. 

2.2.2. Bottom-up method 

The method is based on the spontaneous combination of single atoms into larger structures “atom to atom”, 
“particle to particle”, “cluster to cluster” or as a result of controlled nano-crystallite growth: 
a) chemical, as a result of: 

− Fe(II) and Fe(III) ion reduction, (Equations 1 and 2), usually anhydrous or hydrated chlorides and 
sulfates(VI) and sodium borohydride (NaBH4), potassium borohydride (KBH4), hydrazine (N2H4●H2O) 
or ascorbic acid (C6H8O6) [1, 7, 15, 17, 19, 23, 26, 30, 34, 90-93]:

 2Fe2+
(aq) + BH-

4(aq) + 3H2O(aq) → 2Fe0
(s) + H2BO-

3(aq) + 4H+
(aq) + 2H2(g) (1)

 4Fe3+
(aq) + 3BH-

4(aq) + 9H2O(aq) → 4Fe0
(s) + 3H2BO-

3(aq) + 12H+
(aq) + 6H2(g) (2)

− geothite [α-FeO(OH)] reduction using dihydrogen (H2) [21, 28, 35, 94],
− hydrolysis (Equation 3) and condensation (Equation 4) of precursors, usually metal (Al, Ti) and silicate 

(Si) alkoxides with a general formula M(OR)n, where R-alkyl, referred to as a sol-gel is used to form 
crystalline and amorphic nano-oxides [21, 35, 95-98]:

 MOR + H2O → MOH + ROH (3)

 MOH + ROM → M-O-M + ROM (4)

− reversed micelle method (microemulsion) [28, 35, 99],
− metal ion reduction using ultrasound – sonochemical reduction [12, 28, 35, 87],
− metal ion reduction using UV radiation – photochemical reduction [12, 21, 28, 35, 100-104],
− hydrothermal synthesis [12, 18, 21-24, 35, 67, 81, 87, 89, 105-107],
− electrochemical deposition [21, 27, 28, 31, 85, 108],
− chemical vapour phase deposition, CVD, [21, 28, 29, 35, 74].;
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b) biological, with the following used as Fe(II) and Fe(III) ion reducing agents: 
− extracts or infusions from plant leaves or shoots (see Table 2) for obtaining iron nanoparticles 

characterized by a lower agglomeration rate, referred to as BB-Fe NPs, as opposed to the particles 
obtained by chemical reduction, referred to as n-ZVI [21, 35, 90, 92, 103, 108-112]. 

 The extracts and infusions are the reducing agents used in “green chemistry” and may be used to replace 
sodium borohydride (NaBH4), potassium borohydride (KBH4) and hydrazine (N2H4·H2O) – hazardous 
substances commonly used as reducing agents [12, 21, 35]. Table 1 shows the plant materials commonly 
used in extracts and water infusions and the microorganisms used as iron salt reducing and stabilizing 
agents for the n-ZVI particles. 

 The iron salt reducing agents and stabilizing agents for metallic nanostructures include natural 
substances occurring in bottom fermentation beers including: maltose (C12H22O11), dextrins (complex 
hydrocarbons), lactic acid (C2H4OHCOOH), polyphenols and alanines [α-aminoacids –[CH3CH(NH2)
COOH] [90, 92, 103, 108, 113, 114].;

Table 1. Plant materials for extracts and infusions and microorganisms used as Fe(II) and Fe(III) salt reducing 
agents and n-ZVI stabilising agents

Plant material Microorganisms
American blueberry (lat. Vaccinium corymbosum) (leaves and shoots) 
[35, 90, 108, 110, 115]

Bacteria [35, 90, 92, 108, 120, 121]Oak (leaves) [35, 90, 92, 108, 110]
Mulberry (leaves) [35, 90, 92, 108, 110]
Cherry (leaves) [35, 90, 92, 108, 110]

Viruses [35, 90, 108, 110, 112]Green tea (leaves) [90, 92, 108, 110, 116, 117]
Fenugreek (lat. Trigonella foenum-graecum) [90, 108-110, 118]
Sorghum (lat. Sorghun Moench) [90, 92, 108, 110, 111, 119] Fungi [90, 110, 122-125]

− essential oils [90, 92, 108, 110, 112], 
− biodegradable plant surfactants [90, 108, 110, 125]. 
 Generally, all plant-based materials are environmentally friendly and increase the compatibility 

of derived nano-materials, as observed in the synthesis of gold nanoparticles [90, 92, 103, 108, 109, 
111, 114, 117].;

c) physical, as a result of: 
− microwave radiation [21, 35, 126],
− high pressure magnetron sputtering gas condensation [21, 29, 35],
− ablation (cooling) metallic iron vapours using laser radiation (laser ablation) [127],
− arc discharge [27, 28, 35, 128]. 

n-ZVI particles can be obtained by the thermal reduction of zero-valent iron pentacarbonyl, Fe(CO)5 in organic 
solvents or argon. High synthesis costs and significant amounts of effluent make this method impracticable [78]. 
The high potential for practical application of n-ZVI and ZVI-based composites led to a number of research 
projects aimed at developing new synthesis routes and determining their chemical composition [31, 35, 
89, 90, 129]. 

2.3. n-ZVI structure (morphology) and chemical composition 

Testing has shown that the structure, dimensions, shape, particle size distribution and chemical composition of 
ZVI depends on the synthesis route and conditions, substrates used and the atmosphere in direct contact with 
the particles [28, 29, 31, 92, 93, 104, 130-134]. The findings were verified by the specification of ZVI particles 
available on the market and detailed in Table 2.
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Table 2. Properties of ZVI particles offered by different manufacturers

Manufacturer Synthesis methods ZVI particle size Chemical composition 
of the coating

Toda Kogyo Corp. (Japan) H2 reduction 70 nm Magnetite, (Fe3O4)

W.-X. Zhang, Lehigh University, (USA) NaBH4 reduction 10-100 nm Geothite, [FeO(OH)],
Wustite, FeO

Fischer Scientific (USA) electrolytic 150 µm α-ZVI

A detailed morphology and structure of ZVI particles was developed using the latest research methods: 
a) Transmission Electron Microscopy (TEM) [93, 130, 135, 136],
b) Scanning Electron Microscopy (SEM) [93, 136, 137],
c) Scanning Transmission X-ray Microscopy (STXM) [130],
d) Brunauer-Emmett-Teller surface area measurement (BET-N2) [35, 93, 130, 134, 137],
e) X-ray Diffraction (XRD) [93, 130, 134, 137-139],
f) Energy Dispersive X-ray spectrum (EDX) [130],
g) X-Ray Photo-electron Microscopy (XPS) [93, 130, 140-142],
h) Electron Energy-Loss Spectroscopy (EELS) [136],
i) Fourier Transform Infra-Red Spectroscopy (FT-IR) [35, 137],
j) Electro-Migration Nanoparticles (EMNP) [31, 34, 35],
k) Mössbauer Spectroscopy (MS) [138, 143, 144],
l) Iso-Electric Point (IEP) [93],
m) Tomographic Reconstruction (TR) [35, 139].
Results of the tests show that ZVI particles made using the bottom-up method usually feature a core-shell 
passivating oxide layer structure [21, 28, 29, 35, 143, 145, 146]. The core is made up of the iron atoms in their 
alpha allotropic form (α-Fe) which, in the ambient conditions, is stable and show ferromagnetic properties 
[35, 136, 147-154]. The interaction of different oxygen forms (●O, O2, O3, H2O2) and H2O with the surface 
of primary α-ZVI particles leads to the formation of a passivating oxide layer [35, 136, 146, 148, 151-154]. 
Elemental iron ZVI is an electron donor and slowly oxidizes to Fe(II) ions releasing 2e– (Equation 5):

Fe(0)(s) → Fe(II)(aq) + 2e-
(aq)  (5)

The main component of the passivating oxide layer is an oxidized Fe(II) layer containing: Fe(II)O, Fe(III)(OH)3, 
Fe(II)Fe(III)2O4. The complete oxidation of those products generates geothite [iron(III) hydroxy-hydroxide 
Fe(III)O(OH)] and iron(III oxy-hydroxide [Fe2(III)O3·0.5H2O] [148, 154]. 
Fe(II) and Fe(III) ions on the ZVI surface make the passivating oxide layer insoluble in the neutral environment, 
protecting the primary ZVI particles against sudden oxidation [35, 145-150]. The ZVI particle corrosion rate 
shows that it to be dependent on the raw material, reducing agent and te medium’s pH. At pH 8.9-6.5, the 
corrosion rate decreases, whereas at pH 6.5 it is constant (100% ZVI content is maintained) [35, 136, 151-154]. 
Figure 2 shows the zero-valent iron ZVI nanoparticles (grains) with the core-shell passivating oxide layer [35].
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Figure 2.  ZVI nanoparticles (grains) with the core-shell passivating oxide layer: a) αZVI, b) FeO, c) Fe(OH)2, 
d) FeO·Fe2O3, e) FeOOH, f) Fe2O3·0.5H2O

  
(a)                                                                                (b)

Figure 3. Electron microscope (SEM) images of the ZVI particles: (a) agglomerate 200 nm in diameter with 
10 nm grains (Photo (b)) (Photo by Z. Foltynowicz)

SEM images (Fig. 3) shows the nanoparticle structure, a key factor in determining reactivity. Particles in the 
nanoscale (1-100 nm) region show a large surface area available for the interaction with reagents resulting in 
a high reactivity of their surfaces. Iron nanoparticles, 1 to 100 nm in diameter and specific surface area from 
20 to 40 m2/g, show 10 to 1,000 times higher reactivity than granulated iron particles with a surface area below 
1 m2/g. The surface area of the spheres increases by a factor of 10, while the particles’ diameter decreases 
by a factor of 10. Iron powder with a particle diameter of 10 nm instead of 10 μm will show a 1,000 times higher 
specific surface area. The oxidation rate of ZVI particles is significantly higher than the oxidation rate of iron 
powders with a diameter of several micrometres and shows a different mechanism, since unlike microparticles, 
it does not require water or moisture to be active (Equation 6) [155, 156]: 

5Fe + 7/2O2 → Fe2O3 + Fe3O4 (6)
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Nanoparticles show a very high specific interaction between the internal particles and surface particles due to the 
relatively small radius of the spherical forms or the dimensions of other forms, resulting in “compression” of the 
surface structures, hence the unique hardness of nanomaterials. The particles are thermodynamically unstable 
and tend to interact and react in order to increase the distance between them. The passivating layer has a porous 
structure, thanks to which the nanoparticles can bind trace amounts of metals: Pt, Pd, Ag, Au, Ni resulting in 
further increasing their reactivity [21-25, 27, 35, 155-157].

2.4.	Stabilizers	(emulsifiers)	of	engineered	nanoparticles	

The passivating core layer of the ZVI particles provides active centres for chemical complexes, i.e. chemical 
adsorption on its surface determining the nanoparticle efficiency in the remediation processes [20-25, 27, 78, 
97, 103]. Small particle size, electrostatic intermolecular van der Waals forces and magnetic interactions, 
result in a significant tendency to aggregation and sedimentation [6, 18-27, 30, 97, 103, 131]. To limit this 
tendency, the ZVI surface is doped with different substances, including stabilizing emulsifiers, e.g. chelating 
agents, EDTA, NTA, which significantly increase the lifetime of colloidal solutions. Table 3 shows the example 
materials used to stabilize the nanoparticles.

Table 3. Protective coatings used as stabilizing agents (emulsifiers) for ENM emulsions
Chemical composition 

of the composite Emulsifier Ref.

Primary 
n-αZVI particles

Hydrophilic biopolymers:
a) plant polysaccharides including:

– starch (C6H10O5)n linear chain, amylose [158, 159]
– dextran sulphate [22, 160]
– guar gum [35, 161]
– alginates, alginic acid calcium or sodium salt [162]
– diacetylquinine (C56H103N9O39) [22, 23, 35, 163-165]
– cellulose derivative: carboxymethyl cellulose, CMC, [166-169]

b) chitosan, chitin derivative [35, 170, 171]

n-Fe3O4 (FeO•Fe2O3)
(magnetite)

Dipeptide ethyl ester (C14H18N2O5), aspartame, Asp-Phe-OMe [21-23, 35]
Polyelectrolytes (flocculating agents), natural and synthetic:
– polyacrylic acid, PAA, [21, 35, 172-177]

Natural oil-based microemulsions [21-25, 35, 178]
Amphiphilic compounds including surfactants  
(cationic, anionic, non-ionic) [21-25, 35, 179-189]

Doped primary 
n-ZVI particles 

(bimetallic BNPs)

Xanthan gum gels: [21, 35, 184]
Phospholipids – (phosphatidylcholines), e.g. lecithin [12, 35, 185]
Natural organic matter (NOM) including humic acids (HA) [21-25, 35, 186, 187]

2.5. ZVI particle carriers 

ZVI particles, when applied on suitable materials, often show higher efficiency, stability and applicability in 
environmental remediation [21-23, 35, 188]. Table 4 shows the stabilizers used in the production of effective 
ZVI-based composites.
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Table 4. Materials used as n-ZVI carriers
Nanocomposite Carrier Ref.

n-ZVI/C Anionic hydrophilic carbon suspended in PAA [21-25, 35, 103, 189]
n-ZVI/EG Exfoliated graphite (EG) [89, 103, 190, 191]
n-ZVI/OMC Ordered mesoporous carbon (OMC) [21, 35, 192-195]
n-ZVI/GC Granulated active carbon (GC) [103, 112, 170, 171, 196-199]
n-ZVI/SiO2 Mesoporous silica (SiO2) [35, 97, 103, 200-202]
n-ZVI/chitosan Chitosan [35, 103, 200]
n-ZVI/R Resins: [35, 103]
n-ZVI/PR – polystyrene resins (PR), [103, 203-207]
n-ZVI/ER – ion-exchange resins. [35, 103, 208]

n-ZVI/CM

Clay materials (CM) including: [103, 209, 210]
– bentonite [103, 211, 212]
– montmorillonite

[35, 213, 224]– mica
– kaolin clay

n-ZVI/pumice Pumice [35, 88, 103, 215]
n-ZVI/MG Metallic glass, amorphic metal and non-metal alloy [35, 94, 103, 216-223]
n-Fe/polymer Stabilizing polymers [224-226]
n-ZVI/GO Graphene oxide [227-230]
n-ZVI/MWCNTs Multi-walled carbon nanotubes (MWCNTs) [230-232]
n-ZVI/LDHs Layered double hydroxides (LDHs) [231-233]
n-ZVI/NMOs Nano-sized metal oxides (NMOs) [94, 103, 234-235]
n-ZVI/zeolite Zeolites [212]

3.	 Factors	determining	chemical	efficiency	of	ZVI	particles	
Many publications show that the synthesis routes and conditions, substrates, reducing agent, suitable protective 
coating, carrier or doping with other metals used in ZVI synthesis, have a significant effect on many parameters 
determining its reactivity [8, 10, 20-25, 27-30, 94, 103, 215]. Due to the role played in the remediation processes, 
the following factors are of key importance: 
a) ZVI particle shape and size [27, 97, 103, 118, 236-240]: The dimensions of nanoparticles referred to in the 

literature are between 10 and 100 nm., 
b) ZVI particle size distribution [241],
c) pH of the colloidal ZVI suspension [236, 242]: pH is a key factor affecting the effectiveness of nanoparticles 

in contaminant degradation processes – the processes run faster in an acidic environment (pH 4) than in an 
alkaline environment (pH 8.1), as shown in the example of nitrobenzene reduction with ZVI particles [242].,

d) ionic strength of the colloidal ZVI suspension [103, 165, 236],
e) chemical stability of the ZVI particle surface area [57, 89, 176, 187, 213, 243-246],
f) ZVI particle mobility (transport) is determined by the following factors: 

− charge and spatial orientation of the emulsifier particles [97, 103, 162, 174, 184, 247, 248],
− limited stabilization of the colloidal ZVI suspension [97, 103, 147, 236, 248, 249],
− intermolecular interaction [147, 236],
− nanoparticle-media type interaction [147, 179, 236, 250],
− affinity to the dense non-aqueous liquid phase DNAPL, [36, 216, 220, 236, 242, 250, 251],
− ionic strength and chemical composition of the ZVI/H2O system [36, 252],
− ZVI aggregation rate [97, 104, 216, 220, 236, 252],
− natural organic matter in the NOM system [97, 103, 253].; 

g) operating parameters (dimensions, particle size distribution, additives, chelating agents and carrier, chemical 
composition of the dispersing medium, composite effectiveness) affecting the effectiveness of ZVI particles [254].
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4. Metallic binary nanoparticle systems 
The high porosity of ZVI nanoparticles means they show a tendency to bond trace amounts of metals including 
platinum (Pt), palladium (Pd), silver (Ag), gold (Au), nickel (Ni), copper (Cu) which in practice increases their 
reactivity [27, 35, 97, 103, 262]. The nanoparticles of one type of metal doped with another metal in the amount 
of 0.1 wt.%, are referred to as the BNPs [35, 103] which, due to their effectiveness in contaminant reduction, 
are classified as a new category of innovative active materials, used more and more frequently in ecosystem 
remediation technologies [35, 158, 262].

Table 5. Example binary metallic systems of BNP nanoparticles showing potential for reducing contaminants
Chemical composition 

of the bimetallic system Reduction Ref.

n-Fe/Pt Hydrocarbon dehalogenation [97]
n-Fe/Ag NO3

- reduction [103]
n-Fe/Pd/amphiphile Trichlorobenzene dehalogenation [179]
n-Fe/Pd/starch Dehalogenation: TCE, PCB − (see 5.2) [170, 184]
n-Fe/Pd/CMC Trichloroethylene dehalogenation [166]
nFe/Pd/SiO2 Trichlorobenzene dehalogenation [170]
n-Fe/zeolite Explosives biodegradation [235]
Fe/Au Reduction: NO3

− [263, 264]
Fe/Ni Tetrachloroethane degradation, phenol biodegradation [256, 257]
Fe/Cu NO3

− reduction [27, 263, 264]

Studies on tri-metallic systems, e.g. ZVI/ PdCu/Ni for removing diclofenac, used to relieve pain from the water 
environment [155], are appearing more frequently in literature. 

5. ZVI’s mechanism of action 
5.1. General 

Free common metals, including ZVI, show a high affinity for all forms of oxygen and water, and thus a natural 
susceptibility to return to the combined state. As a result, achieving a state of equilibrium with the environment 
results in products of that interaction forming on the metal surface. The reaction for common metals is generally 
referred to as corrosion (or rusting in case of iron) [84, 92, 93, 97, 100, 103, 107, 140, 146-149, 264, 265]. 
Metallic ZVI is a moderate reducing agent which reacts with dissolved oxygen (O2) (DO) and to some degree 
with water, as demonstrated by the following simplified corrosion reactions (Equations 7 and 8) [84, 264, 265]:

2Fe(0)(s) + 4H+
(aq) + O2(aq) → 2Fe(II)(aq) + 2H2O (7)

Fe(0)(s) + 2H2O(aq) → Fe(II)(aq) + H2(g) + 2OH-
(aq) (8)

The reaction rate can be increased or decreased by changing the chemical composition of the solution and/or the 
chemical composition of the metallic component [35, 264]. 
The corrosion reactions show that ZVI is an electron donor which slowly oxidizes to Fe(II) ion with the release 
of 2 e– (Equations 9-11):

Fe(0)(s) → Fe(II)(aq) + 2e-
(aq) (E0 = -0,44 eV) (9)

Fe(II)(aq) → Fe(III)(aq) + e- (E0 = -0,77 eV) (10)
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Fe(0)(s) → Fe(III)(aq) + 3e-
(aq) (E0 = -0,33 eV) (11)

The corrosion mechanism can also be described as a Heusler mechanism reaction (Equations 12 and 13):

Fe(0) + H2O → (FeOH)ads + H+ + e- (12)

Fe + OH- → FeOH+ + 2e- (13)

or the Bockris mechanism reaction (Equations 14 and 15):

(FeOH)ads → FeOH+ + e- (14)

FeOH+ + H+ → Fe(II) + H2O (15)

The electrons released in the ZVI reduction process neutralize H+ ions in water forming dihydrogen which 
in turn reacts with atmospheric oxygen, forming water (Equations 16 and 17):

Fe(0) → Fe(II) + 2e- (16)

2H+ + 2e- → 2H● + 1/2O2 → H2O (17)

The metallic ZVI particles are moderate reducing agents which react with dissolved oxygen to a certain degree 
prescribed by the chemical composition of the water – a reaction used to reduce various contaminants in water 
and soil. 
The corrosion process seems very complex which is reflected by the chemical composition of the metallic ZVI 
surface making it difficult to determine the actual mechanism. It is generally accepted that it follows a charge 
transfer reaction [265]. Fe(II) ions on the surface of metallic ZVI oxidize to Fe(III) ions or other oxides: 
FeO0.95, FeO·OH, Fe2O3, [Fe(II)Fe(III)2O4] [35, 97, 103, 264-267]. Since the oxides forming on the ZVI surface 
do not form a cohesive protective layer, the corrosion process is relatively slow [21, 97, 103].

5.2. Organic matter degradation 

In the case of organic contaminants, electrons released by the ZVI nanoparticles initiate the reactions leading to 
their reduction (defragmentation) to neutral products, which may include: 
a) beta-elimination, by forming partially dehalogenated short-life intermediate products which in turn 

are converted into simple hydrocarbons including tetrachloroethene, TCE, or ethene (C2H4) [268-270],
b) hydrolysis or gradual degradation, where a single chlorine atom is removed at each stage and the final 

products are simple hydrocarbons, like ethane (C2H4), ethane (C2H6) etc. [83, 97, 103, 271-275], 
(Equations 18 and 19):

 RCl + H+ + 2e- → RH + Cl- (18)

 Cl2C=CCl2 + H+ + n-Fe(0) → C2H4 + 4Cl- + Fe(II)/Fe(III) (19)

Contaminants such as polychlorinated biphenyls (PCBs) or polychlorinated benzenes are reduced to their 
corresponding hydrocarbons [83].
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5.3. Reduction/immobilization of inorganic matter 

ZVI shows an ability to reduce and absorb elements, as demonstrated in many laboratory and field studies [39, 
142, 276-289]. The reduction of heavy metal ions formed in contact with n-ZVI or n-ZVI-based composites, 
may follow two different mechanisms: 
a) irstly, where the reduction results from direct contact with n-ZVI [35, 279, 283], (Equation 20): 

 Fe(0) + Men+ e-
→ Fe(II) + Me(n-x)+ (20)

b) secondly, where the heavy metals are absorbed onto the n-ZVI core-shell surface and are subsequently 
reduced by Fe(II) ions released by the ZVI core [35, 264, 279]. Most heavy metals can have an intermediate 
oxidation state and are gradually reduced to the zero oxidation state [283], (Equation 21):

 Fe(0) + Men+ e-
→ Fe(II) + Me(n-1)+ e-

→ Fe(II),(III) + Me(0) + e- (21)

6.	 Methods	of	increasing	the	efficiency	of	contaminant	degradation	using	
n-ZVI particles and the biogenic approach 

It has been found that the n-ZVI-microorganisms system aids in the co-degradation of chlorinated organic 
compounds, enabling a high removal efficiency and adequate biological activity of the anaerobic microorganisms, 
to be maintained [150, 287-293]. The microbiological method may include the following processes: 
a) nitrate reduction [294, 295],
b) metallic and non-metallic ion reduction [296-299],
c) phenol and its derivatives reduction [92, 300, 301],
d) removal and deactivation of viruses transferred by water [302],
e) deactivation of anaerobic Escherichia coli [303-305],
f) biosynthesis of superparamagnetic maghemite (γ-Fe2O3) and greigite (Fe3S4) nanoparticles [121, 306],
g) biosurfactant forming process, which is more effective in the presence of n-ZVI particles [307],
h) biodegradation of explosives, including 2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 

hexogen (RDX) [235, 308, 309]. 

7. Examples of contaminant removal processes aided 
by n-ZVI-based composites 

The following examples of contaminant removal processes using n-ZVI-based composites show excellent 
applicability in different processes. The key processes are :

7.1. Degradation by organic contaminant reduction 

The process involves: 
a) halogenated aliphatic and aromatic hydrocarbons [24, 28, 153, 274, 293, 294, 310-316],
b) azo-dyes [54, 182, 215, 317, 318],
c) pesticides [28, 103, 317, 319, 320],
d) pharmaceuticals [155, 321-325],
e) phenol derivatives [326-328],
f) thioethers [329].
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7.2. Reduction/immobilization of toxic inorganic substances

Table 6 shows the reduction and sedimentation capabilities for inorganic substances, including heavy metal ions, 
semi-metal ions and complex non-metal ions.

Table 6. Reduction/immobilisation of inorganic contaminants using n-ZVI-based composites
Contaminant group Composite used with n-ZVI Ref.

Heavy metal ions:

− Cr(VI)

Fe3O4 [283, 330-335]
Starch [336]

Chitosan [196, 336]
− [283, 332, 335]

− Hg(II) − [335]
− Pb(II) Chitosan [172, 234, 333, 337]
− Cd(II) − [335, 338-340]
− Ni(II) − [335, 337, 338]
Semi-metal ions:
− As(III), As(V); Chitosan [235, 341-348]
− Se(VI) − [235, 349, 350]
Non-metallic ions:
− ClO4

− − [335, 341-348]
− NO3

− − [189, 351]

− PO4
3− Exfoliated graphite [28, 352-357]

− [358, 359]

7.3. High-energy material decomposition

Due to their high toxicity, all military and civil explosives and their post-detonation products are a potential hazard 
to human health and the environment. Explosives in production, storage and transport, due to decomposition with 
time or use (detonation, deflagration) are subject to dispersion, photolysis, irreversible bonding and physical 
sorption polluting and/or contaminating water and soil ecosystems [360-371]. Most commonly, the sources of 
the contamination are: 
a) explosives manufacturing plants,
b) military bases (source of effluents containing primary explosives and their post-detonation products),
c) storage facilities (where the withdrawn explosives may release hazardous volatile substances and may 

spontaneously explode),
d) testing grounds,
e) shooting ranges,
f) unexploded ordnance (mostly from the 1st and 2nd World War). 
Spectacular examples of environmental contamination by explosives and fissile materials are: 
a) Chesapeake Bay on the east coast of the USA, – used for over 100 years as underwater storage for toxic 

military materials, including ammunition [360],
b) Semey region in the former USSR – once a nuclear weapon testing ground contaminated with radioactive 

materials, among them Sr90 and referred to as nuclear waste. 
A list from the US Department of Defense includes over 200 organic substances commonly used in ammunition 
manufacture. Table 7 shows the most commonly used toxic substances.
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Table 7. Selected organic substances commonly produced and used in ammunition and solid rocket fuels
Substance

Ref.Abbreviation 
and common 

name
Chemical name Chemical formula

2-Am-DNT 2-Amino-4,6-dinitrotoluene
CH3C6H2(NH2)(NO2)2

[43, 61, 362, 369, 372]
4-Am-DNT 4-Amino-2,6-dinitrotoluene [43, 61, 362, 369, 373]
CL-20, HNIW 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane C6N12H6O12 [43, 367, 369, 373-375]
DNB 1,3-Dinitrobenzene C6H4(NO2)2 [43, 61, 362, 369, 372]

DNT Dinitrotoluenes: 2,4-DNT, 2,6-DNT CH3C6H3(NO2)2
[40-43, 49, 360, 361, 
366, 372, 376]

EGDN, glycol 
dinitrate Ethyl glycol dinitrate (CH2ONO2)2 [373, 375, 376]

GAPs Glycidyl azide polymer − [40, 43, 362, 369, 373, 
376]

HMX, 
octogen 1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane C4H8N4(NO2)4 [46, 367, 374, 375, 377]

NC Nitrocellulose [C6H9(R2)3O5]n [41-43, 366, 375, 376]

NQ Nitroguanidine (NH2)CN(NO2) [42, 360, 361, 372, 376, 
378]

NTs 2,3,4-Nitrotoluenes − [43, 61, 362, 369, 375, 
379]

PETN, 
penthrite Pentaerythriol tetranitrate C[(CH2ONO2)]4

[43, 362, 369, 372, 373, 
375]

PNCBO 1-Chloro-4-nitrobenzene ClC6H4NO2 [43, 269, 362, 369, 375]
RDX, 
hexogen 1,3,5-Trinitrohexahydro-1,3,5-triazine C3H6N3(NO2)3

[40, 46, 47, 61, 309, 
369, 377, 380]

TNA 2,4,6-Trinitroanilin C6H4N4O6
[362, 366, 372, 375, 
376]

TNB 1,3,5-Trinitrobenzene C6H3N3O6 [43, 61, 362, 375, 381]

TNG, TN 1,2,3-Trinitroxypropylene C3H5(NO3)3
[43, 360, 361, 372, 375, 
376]

TNT, 
trinitrotoluene 2,4,6-Trinitrotoluene C6H2(NO2)3CH3

[43, 46, 50, 362, 363, 
372, 375-377, 382-387]

Nitramine 2,4,6-Trinitrophenyl-n-methylnitramine (NO2)3C6H2N(CH3)NO2 [41-43, 372, 375, 376]

ZVI-based composites are cheap and effective agents used in the decomposition of a wide range of explosives 
as reported in many different studies [38-53, 60-64, 218, 235, 269, 276, 308, 309, 360-389]. The redox potential 
and the oxygen conditions of the soil can undergo temporal and spacial changes thereby determining both 
the mechanism and the rate of their decomposition. Other key parameters are the moisture content and the 
microbiological activity of the edaphon (bacteria, earthworms and other invertebrates) [21-26]. In typical 
conventional explosives, including TNT, RDX, HMX, the former affects the biodegradation rate of other 
materials [390]. Adding 1 wt.% of Cl– or Br– ions to the mixture results in a significant increase in both efficiency 
and rate of their degradation [39]. 
Another list from the US Department of Defence includes inorganic substances [391-400]:
a) ammonium, potassium and lihtium perchlorates; 
b) ammonium, potassium and sodium nitrates; 
c) alloys: Al-Mg, Zn, Ti, Mo, Cr, Zn,
d) metals: Be, Cu, Fe, Pb, Zn,
e) non-metals: S, F, P (white), P (yellow), B, Si,
f) oxides: BaO2, PbO2, Pb3O4,
g) inorganic compounds: mercury(II) fulminate Hg(CNO)2, lead(II) azide Pb(N3)2. 
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Also, a number of monitored toxic organometallic compounds are commonly used, including: 
a) tetraethyl lead, Pb(C2H5)4,
b) mesoporous chelate polymers, e.g. MOF-Fe-ML-101-NH2,
c) carbon composites and organometallic compounds used as carriers. 

7.4. Radioactive material (nuclear waste) deactivation 

It has been shown that n-ZVI particles are also effective in the removal of radioactive elements from groundwater 
using PRBs [401-403] as well as their reduction by the injection of a colloidal aqueous suspension of n-ZVI 
particles into the contaminant’s flow [404]. In practice, the n-ZVI based composites are used to remove U(VI) 
ions in: 
a) mine effluents [63, 405],
b) contaminated water environment (groundwater) [406-409],
c) treated water [410-412].

7.5. Field applications 

Most field applications utilize the reducing properties of primary ZVI particles coated with suitable agents 
which reduce their aggregation and sedimentation properties and stabilize their activity [1, 2, 8, 9, 18, 21-
26, 404]. A significant increase in the effectiveness of ZVI-based composites has been achieved by doping the 
primary ZVI particles with other metals [27, 34, 133, 178, 259]. 
In the environment being remediated, the nanoparticles are distributed using different liquid, the most common 
being water, nitrogen, vegetable oils or suitable water and oil mixtures. The liquid preparations are usually 
introduced into the remediation area every 10 m [21-25, 413]. 
From the point of view of the in-situ practical field applications of engineered nanoparticles in the environmental 
remediation process, the particles should show the following properties: 
a) high efficiency in contaminant reduction [21-27, 35, 57, 59, 103, 216, 257]. The results of field tests have shown 

significant differences in the effectiveness of ZVI particles in the mm-, μm- and nanoscale [6, 178],
b) good mobility in aporous medium [21, 97, 103, 162, 178, 247, 248, 413],
c) sufficient effective time of action (stability) [28, 57, 89, 176, 178, 187],
d) low toxicity [20-24, 35, 103, 414]. 
An example of a chemical composition of the reducing mixture used in practice [21, 25, 413, 414] is: 
a) concentrated aqueous n-ZVI suspension (20-30 nm, 255 g/dm3),
b) emulsifier (6 g/dm3 xanthan gum biopolymer),
c) 43% H2O2,
d) 37.2% vegetable oil,
e) 1.5% SPC (surfactant). 
A key issue limiting the practical application of n-ZVI particles in soil and water ecosystem remediation 
processes, is their high susceptibility to aggregation, resulting in limited mobility [57, 89, 176, 187].

8. Concerns related to the environmental release of n-ZVI particles 
The constantly growing number of practical applications of highly-dispersed ZVI particles is inextricably 
linked with concerns related to an inadequate knowledge of their ecotoxicity. Published studies have shown 
that the current knowledge of concentration, latency time, environmental fate, mobility and ecotoxicity of the 
n-ZVI particles is evaluated critically. It is recommended that, to promote innovative ecological methods of 
nanoparticle synthesis and the introduction of international legislation, would require the monitoring of all 
types of nanoparticles released into the environment. The issue of n-ZVI ecotoxicity cannot be underestimated 
considering the mistakes made in common applications of ACMs [415], PCBs [416], polychlorinated terphenyls 
(PCTs) [417], CFCs and HCFCs [418, 419]. 
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Test results for the mechanism of n-ZVI interaction with living organisms, suggest that its toxicity 
can be caused by: 
a) direct interaction with the biological components of the organism,
b) oxidative stress of the compounds generated by the n-ZVI in aqueous phase,
c) release of Fe(II) and Fe(III) ions by the primary n-ZVI particles used in the Fenton reaction [264, 280]. 
The majority of studies focused on the toxicity of n-ZVI particles on microorganisms. Many reported that 
the particles are toxic to some bacteria, including Pseudomonas stutzeri and Escherichia coli [305, 420-422]. 
A specific mode of action of n-ZVI particles involves causing oxidative stress by the release of reactive oxygen-
containing chemical species, i.e. ROS formed in the Fenton reaction [264, 280]. In general, the interaction 
of n-ZVI particles with microorganisms is highly diverse, depending on the type, physical and chemical 
properties of the nanoparticle coating and the medium [420, 423]. 
In the case of aquatic organisms, the possability of contact with n-ZVI particles is limited to the body of water 
or remediation area. The results of studies have shown that n-ZVI particles and their oxidation products are toxic 
to fresh and saltwater organisms (phytoplankton, plankton − Daphnia magma, water flea), spawn and fish in 
their early stages of development (Orgias lapites − Japanese rice fish) [424-426]. A high diversity of negative 
effects were observed in marine microalgae cultures [244, 426]. 
Studies on the effects of n-ZVI particles on land organisms are sparse and do not include remediation areas where 
those particles were used. Special attention was paid to organisms present in the soil, known as the edaphon 
(bacteria, earthworms and other invertebrates). Results of these studies showed the adverse effects of n-ZVI 
particles on soil, resulting in changes in earthworm (Eisenia fetida and Lumbricus rubellus) body mass 
and mortality rate at particle concentrations over 500 mg/g [320, 427-429]. The effects of n-ZVI particles 
on plants, referred to in some studies, involve phytotoxicity and possible bioaccumulation [420-422, 430-432].

9. Summary
Analysis of studies dealing with aspects of n-ZVI particles led to the following conclusions: 
♦) Replacing ZVI particles in at macro and micro scale with nanoparticles, n-ZVI allows the contaminant 

reduction processes to be carried out while increasing its effectiveness as a reducing agent and a catalyst 
for decomposition of both organic and inorganic hazardous substances. 

♦) Recent developments in n-ZVI particle synthesis have led to limiting the use of hazardous reducing agents. 
♦) The high susceptibility of ZVI nanoparticles to aggregation and settling is a key issue in the practical 

applications of remediation to water and soil ecosystems, sediments and waste recycling sites. 
♦) Surface modification of the primary n-ZVI particles with coatings, mixtures or doping with other metals, 

significantly improves their stability and effectiveness. The chemical composition of the n-ZVI surface 
significantly affects its mobility and depends on the modifying agent used and extant geochemical conditions. 

♦) New and innovative solutions in environmental protection (E-Nano), may bring benefits but may also 
have negative effects. The following integrated, preventive approach is proposed to mitigate the issue: 
– innovative and eco-friendly methods of synthesising primary nanoparticles and n-ZVI-based composites,
– monitoring of nanoparticles released into the environment,
– national and international legislation on nanoparticles,
– intensification and consolidation of research into the effects of n-ZVI on humans, fauna and flora. 

♦) The observed results generally show that ZVI nanoparticles are harmless to the environment and are converted 
into naturally occurring oxides. Some reports suggest that some nanoparticles may permeate cell membranes 
and the blood-brain barrier. Nanoparticles showing high chemical reactivity, when inhaled, may have adverse 
future effects which are difficult to predict. 
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