

Cent. Eur. J. Energ. Mater. 2017, 14(3): 520-533; DOI: 10.22211/cejem/69551

A Novel Method for the Prediction of the Impact Sensitivity of Quaternary Ammonium-based Energetic Ionic Liquids

Mohammad Hossein Keshavarz,^{1*} Karim Esmaeilpour,¹ Hossein Khoshandam,¹ Zahra Keshavarz,² Hamidreza Hafizi Atabak,¹ Sajjad Damiri,¹ Azadeh Afzali¹

¹Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran ²Department of Civil Engineering, Isfahan University of Technology (IUT) P.O. Box 84155-198, Isfahan, Islamic Republic of Iran *E-mail: mhkeshavarz@mut-es.ac.ir; keshavarz7@gmail.com

Abstract: Impact sensitivity is an important safety parameter for the assessment of the hazards of working with new energetic compounds including ionic molecular energetic materials. This paper introduces two novel simple correlations to assess the impact sensitivity of quaternary ammonium-based energetic ionic liquids, which are based on the elemental composition of cations and anions divided by the molecular weight of a desired ionic liquid as well as the contribution of specific cations and anions. For 72 ionic molecular systems as a training set, the root mean square (rms) deviations of predictions for these models relative to experiment are 11 J and 6 J, respectively. The reliability of the models has also been tested for a further three ionic compounds containing complex structures, which give rms deviations of 12 J and 6 J, respectively, with respect to the measured data. The results of the current study indicate that the accuracy of this novel method for the prediction of the impact sensitivity of quaternary ammonium-based energetic ionic liquids is not necessarily enhanced by greater complexity.

Keywords: correlation, quaternary ammonium-based energetic ionic liquid, impact sensitivity, safety

1 Introduction

The environment, the cost associated with both facility clean-up and disposal of chemical waste are important problems in the synthesis and testing of an energetic material. Prediction of the performance and sensitivity of an energetic compound can provide scientists and engineers considerable insight into the understanding of factors affecting these parameters [1-4]. The sensitivity of an energetic material is a consequence of the kinetics and thermodynamics of its thermal decomposition. The impact stimulus needed depends on the ease with which a detectable reaction of any kind can be initiated in an energetic compound.

Impact sensitivity is the easiest method as it involves simply the dropping of a weight, *e.g.* a 2.5 kg mass, from a predetermined height onto a striker plate [4]. This parameter is measured by the height from which there is a 50% probability of causing an explosion. Even though there are the uncertainties associated with the impact sensitivity test, different methods have been developed for the prediction of the impact sensitivity of different classes of neutral energetic compounds, and these have been reviewed elsewhere [1, 5-11]. Since the impact sensitivity of an energetic material depends on the particle size distribution, morphology and the basic molecular structure, the results are often not reproducible [12-14]. For example, the reported values of the impact sensitivities for twice-recrystallized 2,4,6-trinitrotoluene vary from below 25 J to above 61 J [15].

In contrast to the impact sensitivity of neutral energetic compounds where there are many predictive methods, only Politzer *et al.* [16] have recently used a quantum mechanical approach to investigate qualitatively the relationship of the impact sensitivity of energetic ionic liquids with the maximum available heat of detonation, the amount of free space per molecule (or per formula unit) in the crystal lattice and specific features of the electrostatic potential on the molecular or ionic surface. The purpose of this work was to develop a novel method for the prediction of the impact sensitivity of a quaternary ammonium-based energetic ionic liquid from its molecular structure. The importance of being able to do this is that impact sensitivity is the main source of many accidents in work-places where new energetic compounds are handled. It will be shown that the new method can be applied to quaternary ammonium-based energetic ionic liquids containing complex structures for which experimental data have been reported.

2 **Results and Discussion**

2.1 Development of the new models

The elemental compositions of different classes of energetic compounds are important parameters for assessment of their impact sensitivities [5-10, 17-20]. For ionic liquids, it has been found that the elemental composition and the contributions of some cations or anions are important for the assessment of some properties such as density [21, 22]. Experimental data for 72 ionic molecular energetic materials with general formula CHNOCl are given in Table 1. This information has been used to correlate their elemental compositions and structures with impact sensitivity. The results have shown that the following general equation, which was obtained by the best fit to experimental impact sensitivity data through the multiple linear regression method [23], can correlate with the elemental composition of cations and anions as:

$$IS_{IL}(J) = 30.50 + \frac{-965.9(n_C)_{cat} + 756.2(n_H)_{cat} - 1653(n_O)_{cat} + 1164(n_C)_{ani} + 1135(n_H)_{ani} - 1233(n_N)_{ani} - 902.2(n_O)_{ani}}{Mw}$$
(1)

where $IS_{IL}(J)$ is the impact sensitivity of a desired energetic ionic liquid in J; $(n_C)_{cat}$, $(n_H)_{cat}$ and $(n_O)_{cat}$ are the number of carbon, hydrogen and oxygen atoms in the cation, respectively; $(n_C)_{ani}$, $(n_H)_{ani}$, $(n_N)_{ani}$ and $(n_O)_{ani}$ are the number of carbon, hydrogen, nitrogen and oxygen atoms in the anion, respectively; Mw is the molecular weight of the desired quaternary ammonium-based energetic ionic liquid. The contributions of the other elemental compositions are small, and can thus be neglected because their presence does not change the coefficient of determination or R-squared values of Equation 1. In contrast to neutral energetic compounds, the elemental compositions of cations and anions are separately important. However, the relative weights of the coefficients of the same elements such as oxygen atoms in the cations and anions are different. Furthermore, increasing $(n_O)_{cat}$ and $(n_O)_{ani}$ can decrease the value of $IS_{IL}(J)$ because these variables have negative coefficients.

Eqs. (1) and (2) with the experimental data (1)								
Cation	Anion	IS _{Exp} [J]	Eq. (1)	Dev	/	Dev		
CH3	NO ₃ -	40 [29]	29	-11	28	-12		
	ClO ₄ -	35 [29]	31	-4	31	-4		
	N3 ⁻	40 [29]	31	-9	30	-10		
H ₃ C <u>N</u> NH ₂ CN	H ₂ N N	40 [29]	36	-4	34	-6		
	NO ₃ -	40 [29]	35	-5	35	-5		
	ClO ₄ -	40 [29]	36	-4	36	-4		
	N ₃ -	40 [29]	37	-3	37	-3		
	N(CN) ₂	40 [29]	49	9	48	8		
^{CH} ³ ∕ci		40 [29]	33	-7	35	-5		
H ₃ CN		40 [29]	42	2	41	1		
		40 [29]	41	1	40	0		
	NO ₃ -	50 [29]	41	-9	40	-10		
	ClO ₄ -	40 [29]	41	1	41	1		
	N(NO ₂) ₂	12 [29]	20	8	20	8		
$H_{3}C \xrightarrow{H_{3}} H_{2}C \xrightarrow{H_{3}} H_{2}CH_{3}$		50 [29]	47	-3	45	-5		
		2 [29]	23	21	0	-2		
	NO ₂ - - - - - - - - - - - - - - - - -	10 [29]	19	9	19	9		

Table 1. Comparison of the predicted $IS_{IL}(J)$ and $IS_{IL}^{corr}(J)$ of ionic liquids by Eqs. (1) and (2) with the experimental data

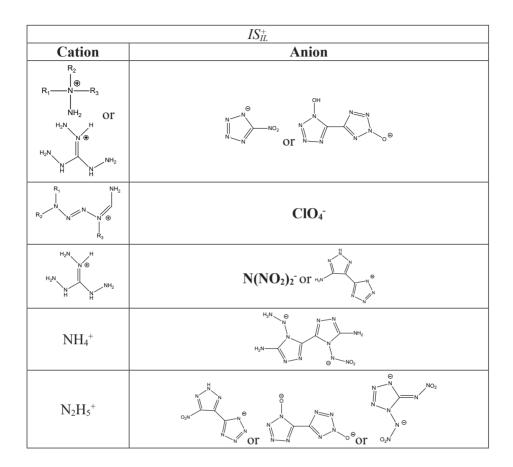
Cation	Anion	IS _{Exp} [J]	Eq. (1)	Dev	Eq. (2)	Dev
CH ₃ NH ₂	NO ₃ -	30 [29]	33	3	33	3
N_ N_ +	ClO ₄ -	15 [29]	34	19	15	0
H ₃ C N N CH ₃	N ₃ -	30 [29]	35	5	35	5
	N(NO ₂) ₂ -	2 [29]	7	5	9	7
	Cl-	60 [30]	56	-4	59	-1
CH ₃	$(N(CN)NO_2)^{-}$	60 [30]	38	-22	61	1
	N(CN)2	60 [30]	61	1	59	-1
H ₃ C – NH ₂	$C(NO_2)_2(CN)^-$	60 [30]	34	-26	51	-9
	$C(NO_2)(CN)_2$	60 [30]	50	-10	49	-11
NH ₂	C(CN)3 ⁻	60 [30]	70	10	68	8
	NO ₃ -	60 [30]	43	-17	69	9
H ₂ N H H ₂ N N+ H ₂ N NH ₂	N(NO ₂) ₂ -	4 [31]	24	20	5	1
	NO ₃ -	30 [32]	23	-7	25	-5
$\begin{array}{c c} H & H \\ H_{3}C & & \downarrow \\ H_{3}C & & - N & - CH_{3} \\ H & H \\ H & H \end{array}$	N(CN) ₂ -	40 [32]	39	-1	40	0
HN NH2 H2N NH2		60 [32]	41	-19	64	4
H ₃ C.	N3 ⁻	40 [32]	38	-2	37	-3
H ₃ C N N ₃	N(CN)2 ⁻	40 [32]	49	9	47	7
	(N(CN)NO ₂) ⁻	40 [32]	34	-6	33	-7
ĊH ₃	$N(NO_2)_2$	40 [32]	21	-19	36	-4
H ₃ C + N ₃	N(CN)2	40 [32]	40	0	39	-1
H ₃ C N ₃	(N(CN)NO ₂) ⁻	40 [32]	34	-6	34	-6
H ₃ C + N ₃ HN N ₃	(N(CN)NO ₂) ⁻	40 [32]	30	-10	30	-10
H ₃ C H ₃ C CH ₃	N ₃ -	40 [32]	49	9	45	5

Cation	Anion	IS _{Exp} [J]	Eq. (1)	Dev	Eq. (2)	Dev
H ₃ C H ₃ H ₃ C H ₃	N ₃ -	40 [32]	46	6	43	3
+ H ₂ N 0 NH ₃	NO3 ⁻ N(NO2)2 ⁻	9 [32] 3 [32]	15 2	6 -1	14 2	5 -1
+ + H ₃ N	$\frac{N(NO_2)_2}{N(NO_2)_2}$	2 [32]	7	5	9	-1
NH4 ⁺	O ₂ N	1.5 [33]	3	1	4	2
$N_2H_5^+$		1 [33]	12	11	0	-1
$\rm NH_3OH^+$		1.5 [33]	-2	-4	-1	-3
NH ₃ OH ⁺		25 [34]	22	-3	21	-4
H ₂ NH ₂		40 [34]	33	-7	33	-7
		40 [34]	37	-3	36	-4
	"\ <u>N</u>	25 [34]	42	17	30	5
$\mathrm{NH_4^+}$	N3 N0 N	20 [34]	7	-13	25	5
NH4 ⁺		9 [34]	10	1	10	1
NH ₃ OH ⁺		2 [34]	4	2	4	2
H ₂ N NH ₂	O ₂ N N	20 [34]	16	-4	16	-4
H ₂ N NH H ₂ N NH ₂	N N	10 [34]	20	10	20	10
NH4 ⁺	Θ NO ₂	10 [35]	14	4	15	5
N ₂ H ₅ ⁺	N N	6 [35]	24	18	5	-1
NH ₃ OH ⁺		3 [35]	1	-2	2	-1

Cation	Anion	IS _{Exp} [J]	Eq. (1)	Dev	Eq. (2)	Dev
NH ₃ OH ⁺		8 [36]	12	4	12	4
NH4 ⁺	02N 0	4 [36]	21	17	7	3
$N_2H_5^+$		9 [36]	16	7	17	8
H ₂ NH ₂		40 [36]	25	-15	34	-6
NH4 ⁺		40 [37]	42	2	40	0
NH ₃ OH ⁺		40 [37]	34	-6	33	-7
H ₂ NH ₂		40 [37]	42	2	41	1
H ₂ N H ₂ N	O ₂ N N	40 [37]	48	8	47	7
NH ₃ OH ⁺		10 [38]	3	-7	3	-7
$N_2H_5^+$	8	10 [38]	23	13	5	-5
NH4 ⁺		40 [38]	14	-26	33	-7
H ₂ N NH ₂		40 [38]	23	-17	36	-4
H ₂ N H ₂ N NH H ₂ N NH ₂		3 [38]	22	19	7	4
Root mean square (rms) deviation				11		6

Beside the contribution of elemental compositions, the existence of some specific cations or anions may enhance or reduce the impact sensitivity in ionic molecular energetic materials. However, the effects of these specific anions or cations can be considered beside those variables given in Equation 1 through the following re-optimized correlation using the multiple linear regression method [23]:

$$IS_{lL}^{corr}(J) = 35.04 + \frac{-1073(n_{H})_{cot} + 728.9(n_{H})_{cot} - 1761(n_{O})_{cot} + 1032(n_{C})_{ani} + 1061(n_{H})_{ani} - 1261(n_{N})_{ani} - 944.0(n_{O})_{ani} + 3662IS_{lL}^{+} - 4291IS_{lL}^{-}}{M_{W}}$$


$$(2)$$

where $IS_{IL}^{corr}(J)$ is the corrected impact sensitivity in J; IS_{IL}^+ and IS_{IL}^- are two correction functions that depend on stabilizing or destabilizing structural parameters in cations or anions. Indeed, the parameters IS_{IL}^+ and IS_{IL}^- show the

existence of specific cations or anions for correcting deviations of the number of atoms in Equation 1 from experimental data. The values of IS_{IL}^+ and IS_{IL}^- are equal to 1.0 for the existence of specific cations or anions given in Table 2. The parameters IS_{IL}^+ and IS_{IL}^- are equal to zero if the specified cations or anions in Table 2 are not satisfied. As indicated in Table 2, the kind of cations and anions is important for considering the contribution of IS_{IL}^+ and IS_{IL}^- . For the same cation, the contribution of two different anions may give two different behaviors. For example, quaternary ammonium containing cations with the general formula $R_1R_2R_3N^+-NH_2$ gives IS_{IL}^+ and IS_{IL}^- with two anions 5,5'-(hydrazine-1,2-diyl) bis(tetrazol-1-ide) and 5-nitrotetrazol-1-ide, respectively. The presence of two -NH- groups in 5,5'-(hydrazine-1,2-diyl)bis(tetrazol-1-ide) can provide $IS_{IL}^{corr}(J)$ because it was indicated that $-NH_2$ and >NH groups can decrease the sensitivity of an energetic compound with respect to impact stimuli [24]. Meanwhile, the attachment of a nitro group to the tetrazole ring in 5-nitrotetrazol-1-ide can increase its sensitivity.

	IS_{IL}^+
Cation	Anion
$\mathbb{R}^{R}_{CH_2)^{n}-N_3}$	$N(NO_2)_2^-$
$\begin{matrix} R_2 \\ & & \\ & & \\ R_1 N - N H_2 \\ & & \\ $	$N(NO_2)(CN)^-$ or $C(NO_2)_2(CN)^-$ or NO_3^-
$\mathrm{NH_4^+}$	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $
H ₂ [®] H ₂ N NH ₂	$H_2N \xrightarrow{N_N} H_2 \xrightarrow{N} H_2 $
HNNH2 H2NNH2 NH2	

Table 2. The contribution of IS_{IL}^+ and IS_{IL}^- in ionic liquids

Equations 1 and 2 may give large deviations for those ionic molecular energetic materials that have the following conditions:

- (a) For the other classes of energetic ionic liquids, *e.g.* hydrazinium (picrylamino)-1,2,4-triazole [25] and hydroxylammonium salt of 2,6-bis(picrylamino)-3,5dinitropyridine [26].
- (b) High oxygen content of cation, where a high value for the second term in Equation 1 can give a negative value of $IS_{IL}(J)$, *e.g.* (2,4,6-trinitrophenyl) guanidinium cation [27].
- (c) Energetic metal salts such as silver salts with 5-aminotetrazole ligands [28].

2.2 Statistical evaluations of the new correlation

Tables 3 and 4 indicate the statistical parameters of Equations 1 and 2 corresponding to four and six variables in these equations, respectively. As can

be seen, these variables in both equations have a highly significant influence through their extremely small *p*-values and standard errors. The standard error of a coefficient is an important statistical parameter because it measures the precision of assessment of a coefficient where precision is measured by the standard deviation over repeated measurements. The *p*-value of a coefficient is the second important statistical parameter as it provides the probability threshold at which the null hypothesis would be rejected. Since all of the *p*-values are less than 0.05, the outcomes of the two new correlations are significant. Thus, the observed effect is not due to random variations. *R*-squared values or the coefficients of determination of Equations 1 and 2 are 0.685 and 0.908, respectively, which confirm the higher reliability of Equation 2. Equation 1 can be easily applied to the many energetic ionic liquids given in Table 1 because many of them do not have specific ionic liquids corresponding to IS_{IL}^+ and IS_{IL}^- . The existence of IS_{IL}^+ and IS_{IL}^- can decrease and increase $IS_{IL}^{corr}(J)$ in Equation 2.

	Coefficients	Standard	P-value	Lower bound	**
	Coefficients	error	1 -value	(95%)	(95%)
$(n_C)_{cat}/Mw$	30.50	8.10	3.65E-04	14.32	46.69
$(n_H)_{cat}/Mw$	-965.9	358.5	9.01E-03	-1682	-249.60
$(n_O)_{cat}/Mw$	756.2	155.2	7.55E-06	446.3	1066
$(n_C)_{ani}/Mw$	-1653	527	2.60E-03	-2706	-599.6
$(n_H)_{ani}/Mw$	1164	250	1.66E-05	664.6	1663
$(n_N)_{ani}/Mw$	1135	380	3.97E-03	376.4	1894
$(n_O)_{ani}/Mw$	-1233	181	4.03E-09	-1594	-870.9

 Table 3.
 Standardized coefficients and some statistical parameters of Eq. (1)

 Table 4.
 Standardized coefficients and some statistical parameters of Eq. (2)

				*	I (/
	Coefficients	Standard	P-value	Lower bound	* *
		error		(95%)	(95%)
$(n_C)_{cat}/M_W$	35.0	4.2	7.39E-12	26.73	43.36
$(n_H)_{cat}/Mw$	-1073	192	5.43E-07	-1456	-689.1
$(n_O)_{cat}/Mw$	728.9	82.0	1.14E-12	565.0	892.7
$(n_C)_{ani}/Mw$	-1761	287	6.59E-08	-2335	-1187
$(n_H)_{ani}/Mw$	1032	130	5.62E-11	771.0	1292
$(n_N)_{ani}/Mw$	1061	195	9.10E-07	672.1	1450
$(n_O)_{ani}$ /Mw	-1261	94	4.73E-20	-1448	-1074
IS^{+}_{IL}/Mw	-944.0	115.7	2.12E-11	-1175	-712.6
IS_{IL}/Mw	3662	427	3.84E-12	2809	4514

Copyright © 2017 Institute of Industrial Organic Chemistry, Poland

Table 5. Comparison of the predicted $IS_{IL}(J)$ and $IS_{IL}^{corr}(J)$ of several ionic liquids containing complex molecular structures by Eqs. (1) and (2) with the experimental data

Cation	Anion	IS _{Exp} [J]	Eq. (1)	Dev	Eq. (2)	Dev
CH3 NH2 H3C N N H2 CH3 CH3		25 [29]	32	7	33	8
H ₂ N NH H ₂ N NH ₂ NH ₂	O ₂ N N N N	8 [34]	26	18	12	4
H ₂ N WH H ₂ N NH ₂	O ₂ NO ₂ O ₂ N	40 [37]	44	4	43	3
Root mean square	e (rms) deviation			12		6

The differences in the predictions from the experiments for Equations 1 and 2 are also given in Table 1. As seen in Table 1, the root-mean-square (rms) deviations of Equations 1 and 2 are 11 J and 6 J, respectively, which also confirm the greater reliability of Equation 2. The estimated $IS_{IL}^{corr}(J)$ for Equation 2 are less than ± 20 J for all 72 ionic liquids given in Table 1. Table 5 compares the predicted results of Equations 1 and 2 for a further three energetic ionic liquids containing complex structures. The rms deviations of Equations 1 and 2 are 12 J and 6 J, respectively. Thus, the new method can be used easily for any energetic ionic liquids containing complex structures. The values determined for the impact sensitivities of the ionic liquids depend on energetic cations or anions that might provide an active site for initiation of decomposition reactions. The new method can be useful for obtaining reliable impact sensitivities for energetic ionic liquids having a wide range of reported impact sensitivities.

3 Conclusions

It is an important problem for both chemists and the chemical industries to synthesize and develop safe energetic ionic liquids. An inability to predict the impact sensitivities of energetic ionic liquids can prevent the development of those compounds that have a high sensitivity with respect to external impact stimuli. In contrast to the various approaches that are available for the prediction of the impact sensitivity of neutral energetic compounds, there is no method for the prediction of the impact sensitivity of energetic ionic liquids. The main intent of this work was to investigate the likelihood of a generalized method to correlate the impact sensitivities of energetic ionic liquids with their structures. It was shown that the impact sensitivity of an energetic ionic liquid depends on the elemental composition of both the cation and anion of a desired energetic ionic liquid divided by its molecular weight. The existence of some specific cations and anions is the other important factor that can be used to adjust the large deviations of impact sensitivities on the basis of elemental composition. As evident in Tables 1 and 5, the results predicted by Equation 2 show a higher reliability with respect to the experimental data as compared to Equation 1. Thus, the results of the current study indicate that the accuracy of the novel method is not necessarily enhanced by greater complexity.

Acknowledgement

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

References

- [1] Sikder, A.; Maddala, G.; Agrawal, J.; Singh, H. Important Aspects of Behaviour of Organic Energetic Compounds: A Review. J. Hazard. Mater. **2001**, 84(1): 1-26.
- [2] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. *Propellants Explos. Pyrotech.* **2016**, *41*(3): 426-451.
- [3] Agrawal, J. P. *High Energy Materials: Propellants, Explosives and Pyrotechnics.* WILEY-VCH, Weinheim **2010**; ISBN 978-3-527-32610-5.
- [4] Klapötke, T. M. *Chemistry of High-energy Materials*. 3rd ed., De Gruyter, Berlin/ Boston 2015; ISBN 978-311027358-8.
- [5] Keshavarz, M. H. A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. *Propellants Explos. Pyrotech.* **2013**, *38*(6): 754-760.
- [6] Keshavarz, M. H.; Jaafari, M. Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network. *Propellants Explos. Pyrotech.* 2006, 31(3), 216-225.
- [7] Keshavarz, M. H., Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. Prediction of Sensitivity of Energetic Compounds with a New Computer Code. *Propellants Explos. Pyrotech.* 2014, 39(1): 95-101.
- [8] Keshavarz, M. H.; Pouretedal, H. R. Simple Empirical Method for Prediction of Impact Sensitivity of Selected Class of Explosives. J. Hazard. Mater. 2005, 124(1): 27-33.

- [9] Keshavarz, M. H., Shokrolahi, A.; Esmailpoor, K.; Zali, A.; Hafizi, H. R.; Azamiamehraban, J. Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials. *Chin. J. Energ. Mater.* **2008**, *16*(1): 113.
- [10] Keshavarz, M. H.; Zali, A.; Shokrolahi, A. A Simple Approach for Predicting Impact Sensitivity of Polynitroheteroarenes. J Hazard. Mater. 2009, 166(2): 1115-1119.
- [11] Kim, H.; Hwang, S.-N.; Lee, S. K. QSPR Analysis for the Prediction of Impact Sensitivity of High Energy Density Materials (HEDM). *Chin. J. Energ. Mater.* 2012, 275-275.
- [12] Politzer, P.; Murray, J. S. Impact Sensitivity and Crystal Lattice Compressibility/ Free Space. J. Mol. Model. 2014, 20(5): 1-8.
- [13] Politzer, P.; Murray, J. S., Impact Sensitivity and the Maximum Heat of Detonation. J. Mol. Model. 2015, 21(10): 1-11.
- [14] Pospíšil, M.; Vávra, P.; Concha, M. C.; Murray, J. S.; Politzer, P. Sensitivity and the Available Free Space per Molecule in the Unit Cell. *J.Mol. Model.* 2011, 17(10): 2569-2574.
- [15] Rice, B. M.; Hare, J. J. A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules. *J. Phys. Chem. A* 2002, *106*(9): 1770-1783.
- [16] Politzer, P.; Lane, P.; Murray, J. S. Sensitivities of Ionic Explosives. *Mol. Phys.* 2016, 1-13.
- [17] Kamlet, M. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. I. Polynitroaliphatic explosives. *Symposium (International) on Detonation*, 6th, Coronads, CA 1976, 69-72.
- [18] Kamlet, M.; Adolph, H. The Relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic Explosives. *Propellants and Explosives* 1979, 4: 30-34.
- [19] Keshavarz, M. H.,; Pouretedal, H. R.; Semnani, A. Novel Correlation for Predicting Impact Sensitivity of Nitroheterocyclic Energetic Molecules. J. Hazard. Mater. 2007, 141(3): 803-807.
- [20] Zohari, N.; Seyed-Sadjadi, S. A.; Marashi-Manesh, S. The Relationship between Impact Sensitivity of Nitroaromatic Energetic Compounds and Their Electrostatic Sensitivity. *Cent. Eur. J. Energ. Mater.* 2016, *13*(2): 427-443.
- [21] Keshavarz, M. H.; Rahimi, R.; Akbarzadeh, A. R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials Using their Molecular Structures. *Fluid Phase Equilib.* 2015, 402: 1-8.
- [22] Keshavarz, M. H.; Pouretedal, H. R.; Saberi, E. A Simple Method for Prediction of Density of Ionic Liquids through their Molecular Structure. J. Mol. Liquids 2016, 216: 732-737.
- [23] Palm, W. J. Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York 2005; ISBN10: 0072922427.
- [24] Agrawal, J. P.; Hodgson, R. Organic Chemistry of Explosives. John Wiley & Sons 2007; ISBN-10: 0470029676.
- [25] Chioato, Z. L.; Klapötke, T. M.; Mieskes, F.; Stierstorfer, J.; Weyrauther, M.

(Picrylamino)-1,2,4-triazole Derivatives – Thermally Stable Explosives. *Eur. J. Inorg. Chem.* **2016**, *2016*(7): 956-962.

- [26] Klapötke, T. M.; Stierstorfer, J.; Weyrauther, M.; Witkowski, T. G. Synthesis and Investigation of 2,6-Bis (picrylamino)-3,5-dinitro-pyridine (PYX) and Its Salts. *Chem. – Eur. J.* 2016, 22(25): 8619-8626.
- [27] Klapötke, T. M., Mieskes, F.; Stierstorfer, J.; Weyrauther, M. Studies on Energetic Salts Based on (2, 4, 6-Trinitrophenyl) guanidine. *Propellants Explos. Pyrotech.* 2016, *41*(2): 217-222.
- [28] Karaghiosoff, K.; Klapötke, T. M.; Miró Sabaté, C. Energetic Silver Salts with 5-Aminotetrazole Ligands. *Chem. – Eur. J.* 2009, 15(5): 1164-1176.
- [29] Zhang, Q.; Shreeve, J. M. Energetic Ionic Liquids as Explosives and Propellant Fuels: a New Journey of Ionic Liquid Chemistry. *Chemical Reviews* 2014, *114*(20): 10527-10574.
- [30] Gao, H.; Joo, Y. H.; Twamley, B.; Zhou, Z.; Shreeve, J. M. Hypergolic Ionic Liquids with the 2, 2-Dialkyltriazanium Cation. *Angew. Chem.* 2009, 121(15): 2830-2833.
- [31] He, L.; Tao, G. H.; Parrish, D. A.; Shreeve, J. M. Nitrocyanamide-Based Ionic Liquids and Their Potential Applications as Hypergolic Fuels. *Chem. – Eur. J.* 2010, 16(19): 5736-5743.
- [32] Sebastiao, E.; Cook, C.; Hu, A.; Murugesu, M. Recent Developments in the Field of Energetic Ionic Liquids. J. Mater. Chem. A 2014, 2(22): 8153-8173.
- [33] Fischer, D.; Klapötke, T. M.; Stierstorfer, J. 1,5-Di (nitramino) Tetrazole: High Sensitivity and Superior Explosive Performance. *Angew. Chem., Int. Ed.* 2015, 54(35): 10299-10302.
- [34] Izsák, D.; Klapötke, T. M.; Lutter, F. H.; Pflüger, C. Tailoring the Energetic Properties of 5-(5-Amino-1,2,3-triazol-4-yl) Tetrazole and Its Derivatives by Salt Formation: From Sensitive Primary to Insensitive Secondary Explosives. *Eur. J. Inorg. Chem.* 2016, 2016(11): 1720-1729.
- [35] Fischer, D.; Klapötke, T. M.; Stierstorfer, J. 5-Nitriminotetrazole 1-Oxide: An Exciting Oxygen-and Nitrogen-Rich Heterocycle. *Eur. J. Inorg. Chem.* 2015, 2015(28): 4628-4632.
- [36] Klapötke, T. M.; Leroux, M.; Schmid, P. C.; Stierstorfer, J. Energetic Materials Based on 5,5'-Diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole. *Chemistry – An Asian Journal* 2015, 11(6): 844-851.
- [37] Klapötke, T. M.; Pflüger, C.; Reintinger, M. W. Energetic Materials Based on 5,7-Dinitrobenzotriazole and 4,6-Dinitrobenzotriazol-3-ium 1-Oxide Derivatives. *Eur. J. Inorg. Chem.* 2016, 2016(1): 138-147.
- [38] Hafner, K.; Klapötke, T. M.; Schmid, P. C.; Stierstorfer, J. Synthesis and Characterization of Asymmetric 1,2-Dihydroxy-5,5'-bitetrazole and Selected Nitrogen-Rich Derivatives. *Eur. J. Inorg. Chem.* 2015, 2015(17): 2794-2803.