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Abstract: In the present paper, 2,4-dinitroanisole (DNAN) has been evaluated as 
a melt cast explosive in comparison to the widely used 2,4,6-trinitrotoluene (TNT).  
The detonation failure diameter of a bare DNAN charge is greater than 100 mm 
and about 44 mm with 1.5 mm steel confinement.  Comparative studies of two sets 
of formulations were carried out.  The first set comprised formulations containing 
60% of NTO, FOX-7, HMX or RDX and 40% of DNAN or TNT.  The second set 
comprised formulations containing 30% of NTO, FOX-7, TATB or RDX and 70% 
of DNAN or TNT.  The studies were mainly concentrated on characterization of 
the formulations, which included determination of the sensitivity parameters and 
the velocity of detonation (VOD).  The study confirmed that DNAN and DNAN-
based formulations are relatively insensitive compared to TNT and the analogous 
TNT-based formulations respectively.  The rate of the detonation reaction of 
DNAN is enhanced in the presence of the high energy ingredients RDX, HMX, 
FOX-7 and NTO to varying degrees.  The VODs of the FOX-7/TNT and RDX/
TNT formulations match closely with the proportions of FOX-7 and RDX under 
study.  The VOD and shock sensitivity of the FOX-7/DNAN formulations decrease 
rapidly compared to the RDX/DNAN formulations, with increases in the proportion 
of FOX-7 or RDX.  The combinations of NTO with TNT, and NTO with DNAN, 
are more shock insensitive than TNT or DNAN alone.  NTO-based compositions 
are more insensitive than FOX-7-based compositions.  
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1 Introduction

Trinitrotoluene (TNT) is the preferred and widely used melt cast explosive for 
filling munitions.  Although TNT is a low performance explosive, it is an ideal 
base and acts as an energetic binder as well as a desensitizer for relatively sensitive 
high energy explosives like RDX, HMX, PETN etc., in melt cast compositions 
like Comp B [RDX/TNT (60/40)], Octol [HMX/TNT (75/25)], Pentolite (50/50), 
Torpex, etc., which are used as fillings in munitions [1].  These munitions are 
vulnerable to unintended accidental initiation, resulting in huge loss of personnel 
and property.  The design of safer insensitive munitions (IMs) reduces the risks 
of accidental initiations.  One of the aspects in realizing an IM is to use less 
sensitive explosives and their formulations, with performances similar to the 
existing munitions [2].  Plastic bonded explosives (PBXs) are categorized as low 
vulnerability explosives due to their high thermal stability, improved insensitivity 
and good mechanical strength, compared to TNT-based formulations, attributed 
to their rubbery nature in addition to their high-energy output [3].  Despite these 
qualitative advantages, PBXs have some major limitations, such as manufacture 
and filling, which require specialized facilities, and are batch processes, which are 
costly compared to melt cast explosive filling, and due to their inherent physical 
stability are difficult to demilitarize after the expiry of their shelf life.  Thus, 
TNT or TNT-based mixtures are still preferred due to the ease of processing 
in the existing standard melt-cast facilities all over the globe.  The following, 
inherently insensitive materials offer an attractive approach, adoptable for mass 
production of low vulnerability ammunition/warhead fillings at economical cost, 
using existing production facilities for melt-cast compositions.

2,4-Dinitroanisole (DNAN), a Hazardous Division (HD) Class 4.1 flammable 
solid with a melting point of 94.6 °C is reported as a possible low vulnerability 
alternative to TNT [4], with a performance marginally lower (~10%) compared 
to TNT.  Van Alphen [5] observed dimorphism of DNAN, with melting points 
of 86.9 °C and 94.6 °C, suggesting that the latter form is the thermodynamically 
stable form.  Davies et al. [6] have reported the use of DNAN during World 
War II in Amatol 40 (50% DNAN, 35% AN, 15% RDX) for filling the warheads 
of V-1 bombs.  Doll et al. [7] have also reported that DNAN-based melt-cast 
compositions are relatively less sensitive to impact, shock and thermal stimuli.  
Furthermore, Wilson [8] observed that DNAN and DNAN-based compositions 
solidify in a shorter time, with less shrinkage, than TNT-based compositions.  
Samuels et al. [9] have observed irreversible growth, in the form of dimensional 
changes of up to 15%, of cast DNAN test samples subjected to 30 or more 
temperature cycles between –54 °C and +71 °C.  Ward et al. [10] identified six 
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polymorphs during studies of controlled irreversible growth of DNAN during 
cycling between –54 °C and +71 °C, using crystal doping of DNAN with 
2,4-dinitrotoluene (DNT) or 1,3-dinitrobenzene (DNB).  Walsh et al. reported 
toxicity of DNAN during characterization of PAX-21 insensitive munition 
detonation residues [11] and energetic residues from the detonation of IMX-104 
insensitive munitions [12]. 

Lochert [13] reported that 1,1-diamino-2,2-dinitroethene (FOX-7) is 
compatible with TNT and is also significantly less sensitive than RDX, 
particularly to impact and friction stimuli, and that the velocity of detonation 
and detonation pressure of FOX-7 charges are marginally higher than those for 
RDX charges.  Wild and Teipel [14] have also reported that the performance of 
FOX-7 is close to that of nitramines with relatively insensitive characteristics.  
Mishra et al. [15] have also reported that FOX-7 is a potential replacement for 
RDX in TNT-based non-aluminized and aluminized melt-cast formulations, to 
achieve low vulnerability with little sacrifice in performance.

Lee et al. [16, 17] reported 3-nitro-1,2,4-triazol-5-one (NTO) to be relatively 
insensitive compared to RDX, with detonation performance comparable to RDX.  
Cliff et al. [18] carried out studies on NTO/TNT 50/50 formulations.  Spyckerlle 
et al. [19] reported studies on NTO/TNT/RDX/Al formulations.  Fung et al. [20] 
reported OSX-11 and OSX-12 formulations based on NTO, DNAN, Al, and 
NTO, DNAN, RDX, Al respectively, and studied their processing parameters 
and sensitivity characteristics.  Radhakrishnan et al. [21] prepared spherical NTO 
of different particle sizes and determined the powder characteristics and also 
the viscosity behaviour of cast-cured PBXs.  Trzciński et al. [22] characterized 
DNAN and studied melt-cast formulations containing 40% of DNAN or TNT, 
20% of RDX and 40% of NTO. 

TATB is reported to be a thermally stable compound which resists heating 
up to 300 °C, and is also insensitive to impact and friction.  TATB is extremely 
shock insensitive and requires a large amount of booster to initiate it.  Limited 
studies have been reported on melt cast TATB/TNT 50/50 and TATB/Al/TNT 
40/20/40 formulations [23, 24]. 

Considering the exhaustive research work reported on low vulnerability 
explosives based on FOX-7, NTO, TATB and DNAN for IMs, we have undertaken 
studies to further explore these types of formulations for future applications.  
The present studies include comparative evaluation of melt-cast formulations 
based on NTO, FOX-7, TATB, HMX, and RDX and DNAN or TNT with 
respect to their sensitivities to different types of mechanical stimuli, and their 
explosive properties.
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2 Experimental

2.1 Materials 
The materials used for the preparation of the formulations are given in Table 1.

Table 1. Materials used in the formulations
Sl. 
No. Material Melting point

[°C] Source

1 DNAN 95.2 Synthesized at HEMRL, Pune, India [4]
2 TNT 80.6 HE Factory, Pune, India
3 RDX 204 Ordnance Factory, Bhandara, India
4 FOX-7 264 (d) Synthesized at HEMRL, Pune, India [25]
5 NTO 232 Synthesized at HEMRL, Pune, India [26]
6 TATB 350 (d) Synthesized at HEMRL, Pune, India [27]
7 HMX 276 Synthesized at HEMRL, Pune, India

2.2 Formulations
The formulations prepared for characterization and evaluation were:
(i) Characterization of DNAN used for the studies and its comparison with TNT.
(ii) Comparison of NTO/DNAN 60/40, FOX-7/DNAN 60/40, HMX/DNAN 

60/40 and RDX/DNAN 60/40, analogous to TNT-based formulations: Set-1.
(iii) Comparison of NTO/DNAN 30/70, FOX-7/DNAN 30/70, TATB/DNAN 

30/70 and RDX/DNAN 30/70, analogous to TNT-based formulations: Set-2.

2.3 Processing of the formulations 
The standard melt-casting technique was used for the preparation of the charges.  
The general procedure adopted was to melt the TNT/DNAN in a jacketed vessel 
using steam.  The required quantity of solid ingredient, RDX, FOX-7, NTO, 
HMX or TATB, was then incorporated into the molten mass with stirring at 
an appropriate speed and stirring was continued for about 20-30 min to form 
a homogenous mix.  The melt, at a controlled temperature, was transferred into 
a suitable mould/test casing, followed by hot probing and compensation for 
shrinkage with additional melt.  The cast charge was allowed to cool overnight 
under ambient conditions.  The charge was machined to the required dimensions, 
stored and evaluated at temperatures ranging between 25 °C and 40 °C.  

2.4 Homogeneity of the cast charges
Cast charges of 35 mm (diameter) × 250-300 mm (length) were sliced into pieces of 
about 10 mm thick discs.  Three discs representing top, middle and bottom portions 
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were analyzed for homogeneity of the ingredients along the length of the charge.  
The proportion of an ingredient was determined based on the selective solubility 
of the ingredient in a solvent.  For NTO/DNAN and NTO/TNT formulations, 
DNAN- or TNT-saturated distilled water at about 50 °C was used as the solvent to 
dissolve the NTO.  While, for the FOX-7, TATB, RDX and HMX and DNAN- or 
TNT-based formulations, FOX-7-, TATB-, RDX- or HMX-saturated benzene at 
about 50 °C was used as the solvent to dissolve the DNAN or TNT.  The variation 
in the ingredients observed in the top, middle and bottom portions was 2% max.

2.5 Characterization/evaluation methods
The standard methods used for the characterization and evaluations were 
as follows:
2.5.1 Impact sensitivity: Sensitivity to impact stimuli was determined using the 

fall hammer method (2 kg drop weight) as per Bruceton’s staircase method, 
and the results are given in terms of the statistically obtained height for 
50% probability of explosion (h50).

2.5.2 Friction sensitivity: Sensitivity to frictional force was determined using 
Julius Peters’ Apparatus (36 kg) and values given are for five consecutive 
no explosions. 

2.5.3 Shock sensitivity: Shock sensitivity was determined by the card gap test 
[10] using cellulose acetate sheet as the attenuator.  The thickness of 
the sheets was varied until No-Go was observed on the witness plate.  
The shock sensitivity is reported in terms of the minimum pressure of 
a shock wave that can initiate detonation of the formulation.  The shock 
sensitivity results were confirmed by conducting 5 tests with consistent 
No-Go observation.

2.5.4 Velocity of detonation: The velocity of detonation (VOD) was measured by 
the standard ionization probe technique.  The reported VOD is an average 
of three trials of each formulation and rounded to the nearest 10 m/s.

3 Results and Discussion 

3.1 Characterization and evaluation of DNAN

3.1.1 Detonability study of DNAN 
The detonability test of DNAN was carried out to determine the diameter close 
to its detonation failure diameter.  The charge details and results of the tests are 
given in Table 2.  The donor charge was 136 g tetryl pellets.  The acceptance 
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criterion set for passing the test was a puncture in a 10 mm thick steel witness 
plate.  Specimen photographs of the test results are shown in Figures 1 and 2.  The 
density of the cast DNAN charges for the detonability test and the determination 
of VOD was in the range of 1.43 g/cm3 to 1.48 g/cm3, i.e. about 92-96% TMD.  
The variation observed can probably be attributed to fine porosity in the charge 
as well as minor measurement and rounding errors of the test piece.  

It can be seen that the detonation failure diameter of bare DNAN is larger 
than 100 mm.  The results match with the observation of Samuels [28] that the 
critical diameter of DNAN is larger than 3.25 inches.  It can also be seen that 
35 mm and 47 mm DNAN charges confined in 1.5 mm Al do not initiate to 
detonation.  The dissipation of the decomposition products due to the failure of 
Al confinement after a certain run distance results from a weak shock build-up 
leading to partial detonation.  The partially reacted charge was scattered with 
the remains intact.  It can also be seen that a 35 mm DNAN charge confined in 
1.5 mm steel does not initiate to detonation due to the small charge diameter and 
for reasons similar to those discussed above.  However, a 47 mm DNAN charge 
confined in 1.5 mm steel initiated to detonation, leading to a puncture in the 
witness plate.  The shock pressure builds up in this case within a short run distance 
as both steel confinement and a larger charge diameter contribute concurrently 
to the phenomenon.  Detonability of DNAN was also confirmed in a standard 
shock sensitivity tube (1.5 mm thick steel of ϕ 44 mm, height 150 mm).  From 
the above it can be established that the detonation failure diameter of DNAN 
confined in a minimum of 1.5 mm steel would be about 44 mm.  

3.1.2 Sensitivity and explosive characteristics of DNAN
The comparative sensitivity and explosive characteristics of DNAN and TNT are 
given in Table 3.  DNAN and TNT charges cast in a 47 mm diameter seamless 
mild steel tube of 1.5 mm thickness were used for the determination of VOD.  
The achieved VOD of DNAN was 5000 m/s, compared to 6700 m/s for TNT.  
The VOD of DNAN in the present study is on the low side compared to 5591 m/s 
(5344 m/s calculated from CHEETAH-2 code) reported by Provatas et al. [6] 
and 5690 m/s (1.45 g/cm3) for confined DNAN (ϕ 25 mm × Cu 2.5 mm wall 
thickness) reported by Trzciński et al. [22].

Photographs of the shock sensitivity test arrangement and the recovered 
DNAN test pieces at different shock pressures are shown as Figure 3.  DNAN is 
quite insensitive to shock compared to TNT.  Provatas et al. [6] reported shock 
sensitivity of 7.0 GPa for DNAN, which indicates that it was more insensitive to 
shock compared to the DNAN used in the present study (6.0 GPa).  DNAN is also 
quite insensitive to impact and marginally insensitive to friction, compared to TNT. 
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Table 2. Results of detonability test of DNAN cast charges 

Sr. 
No.

DNAN charge 
dimensions [mm] 

Charge 
density
[g/cm3]

Percent 
TMD 

Confine-
ment
[mm]

Result/observation 
of witness plateDiameter Length

1 50 and 75 240-300 1.45-1.48 93.7-95.6 No ND #
2 100 250 1.43-1.45 92.4-93.7 No ND-dent #
3 35 300 1.44 93.0 1.5 Al ND #
4 35 300 1.44 93.0 1.5 MS ND #
5 47 300 1.45 93.7 1.5 Al ND #
6 47 300 1.45 93.7 1.5 MS D

D – Detonation, ND – No detonation, # – DNAN recovered

 
                                  Test arrangement        Test result
Figure 1. Detonability test Sr. No. 2 (ϕ 100 mm) DNAN charge

 
                                  Test arrangement       Test result 
Figure 2. Detonability test Sr. No. 5 (ϕ 47 mm and 1.5 mm Al confined) DNAN 

charge

Table 3. Sensitivity and explosive characteristics of DNAN and TNT

Explosive Density
[g/cm3]

Percent 
TMD

VOD
[m/s]

Sensitivity
Shock
[GPa]

Impact
h50 [m]

Friction
[kg] 

DNAN 1.48 95.6 5000 6.00 >1.70 36.0
TNT 1.59 96.1 6700 4.14 1.30 32.4

The observed variation in VOD was within ±50 m/s of the average of 3 readings 
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3.2 Characterization and evaluation of NTO, FOX-7, HMX, TATB, 
and RDX formulations based on DNAN or TNT 

The achieved sensitivity and explosive characteristics of Set-1 and Set-2 are 
given in Table 4.

   
              a                              b1                             b2                            b3

Figure 3. Shock sensitivity test of a DNAN charge: (a) test arrangement; (b) 
test results: 5.5 GPa (b1), 5.8 GPa (b2), 6.0 GPa (b3)

Table 4. Sensitivity and explosive characteristics of the various formulations

Formulation Density
[g/cm3]

Percent 
TMD

VOD
[m/s]

Sensitivity
Shock
[GPa]

Impact
h50 [m]

Friction
[kg] 

NTO/DNAN 60/40 1.65 94.5 6750 6.80 1.38 36
FOX-7/DNAN 60/40 1.66 95.8 7000 3.20 0.64 36
HMX/DNAN 60/40 1.70 97.3 7600 1.60 0.75 36
RDX/DNAN 60/40 1.62 95.3 7400 2.10 1.08 36
NTO/TNT 60/40 1.69 94.0 7300 5.13 1.14 36
FOX-7/TNT 60/40 1.70 95.4 7600 2.45 0.53 36
HMX/TNT 60/40 1.75 97.3 8000 1.40 0.87 25.2
RDX/TNT 60/40 1.68 96.6 7640 1.87 0.99 28.8
NTO/DNAN 30/70 1.56 95.0 6200 6.50 >1.70 36
FOX-7/DNAN 30/70 1.56 95.4 6450 2.90 >1.70 36
TATB/DNAN 30/70 1.58 95.5 6250 4.40 1.68 36
RDX/DNAN 30/70 1.56 96.3 6640 2.30 1.10 36
NTO/TNT 30/70 1.64 95.0 6900 5.00 1.65 36
FOX-7/TNT 30/70 1.62 94.4 7060 2.10 1.57 36
TATB/TNT 30/70 1.65 95.5 6930 4.00 1.30 36
RDX/TNT 30/70 1.64 96.4 7230 1.75 1.04 32.4

The observed variation in VOD for these formulations was within ±50 m/s of the average of 
3 readings 

The average particle size of the solid ingredients NTO, FOX-7, HMX and 
RDX used for the preparation of the test samples in the proportion 60/40 with 
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DNAN and TNT was 110 µm, 261 µm, 155 µm and 155 µm respectively, while 
the average particle size of NTO, FOX-7, TATB and RDX used for the preparation 
of the test samples in the proportion 30/70 with DNAN and TNT was 14-25 µm.

3.2.1 Density
It can be seen from Table 4 that a charge density of about 94-97.3% TMD has 
been achieved for these formulations.  The variation observed can be attributed 
to the normal casting method leading to fine porosity in the charge as well as 
minor measurement and rounding errors of the test pieces.  

3.2.2 Velocity of detonation
In both sets of formulations, bare 35 mm diameter charges were used, except 
for the TATB/DNAN and TATB/TNT charges (of Set-2) where cased 35 mm 
(seamless 3 mm steel) charges were used because 35 mm bare charges detonated 
inconsistently. 

In the first set, the VODs of the TNT-based formulations were higher than 
the corresponding DNAN formulations.  The VOD achieved for 60/40 RDX/
DNAN during the present study (7400 m/s) is in good agreement with the value 
(7398 m/s) reported by Provotas et al. [6] for the corresponding composition 
ARX-4027 m2 (DNAN/RDX/MNA 39.75/60/0.25, where MNA is N-methyl-
4-nitroaniline).  The marginal decreases in VOD of 240 m/s and 400 m/s on 
substituting DNAN for TNT in the RDX/TNT 60/40 and HMX/TNT 60/40 
compositions indicates an enhanced rate of reaction of DNAN in the presence 
of RDX and HMX.  A similar trend was not observed with NTO and FOX-7.  
The VODs of FOX-7, NTO, RDX and HMX with TNT in the proportion 60/40 
mainly depends on the VOD of the major energetic ingredient and its interaction 
with TNT during typical detonation reaction.  The VODs of FOX-7 and RDX 
with TNT in the proportion 60/40 are comparable but the same does not hold 
well with DNAN.  The trend observed is similar for the VODs of the other 
formulations with both DNAN and TNT.

In the second set of formulations, the VODs of TNT-based formulations 
are higher than those of the corresponding DNAN formulations.  The decrease 
in VOD observed on substituting DNAN for TNT is in line with the individual 
explosive of the composition alone.  This indicates that DNAN dominates the 
detonation reaction when it is in a high proportion.  The VODs of formulations 
having FOX-7, NTO and TATB with TNT are lower than RDX/TNT.  This trend 
can be attributed to the VOD of the major ingredient and the typical detonation 
reaction of the mix with TNT.  The VODs of formulations having FOX-7, TATB 
and NTO with DNAN are lower than RDX/DNAN 30/70, indicating a slower 
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detonation reaction of FOX-7, TATB and NTO in combination with DNAN as 
compared to RDX with DNAN.  The trend observed for the VODs of DNAN-
based formulations is similar to that of TNT-based compositions and for similar 
reasons, as attributed above.

3.2.3 Sensitivity

3.2.3.1  Shock sensitivity
In the first set of formulations, the shock sensitivity of TNT-based formulations 
was greater than the corresponding DNAN-based formulations.  The decrease 
in shock sensitivity on substituting DNAN for TNT shows that NTO and 
FOX-7 collectively form better mixtures with DNAN than with TNT for a given 
proportion.  However, for the HMX and RDX compositions, the decrease is 
negligible indicating no major advantage on substituting DNAN for TNT.  It 
is also seen that combinations of NTO with TNT and DNAN are more shock 
insensitive than either TNT or DNAN themselves.  On substituting NTO and 
FOX-7 for RDX in RDX/TNT 60/40, the shock sensitivity decreases, while for 
HMX it increases.  Similarly on substituting NTO and FOX-7 for RDX in RDX/
DNAN 60/40, the shock sensitivity decreases, while for HMX it increases.  The 
average particle size of 110 µm of NTO could have also contributed to enhance 
the shock insensitivity compared to the average particle sizes of 261 µm and 
155 µm of FOX-7 and RDX, respectively.  The above trends also indicate that 
unlike for RDX and HMX compositions, where shock sensitivity depends mainly 
on the major energetic ingredient and to a negligible extent on binders like TNT 
and DNAN, in the cases of NTO and FOX-7 the shock sensitivity depends on 
both the major energetic ingredient and the binder.

In the second set of formulations, the shock sensitivity of TNT-based 
formulations formed with FOX-7, TATB and RDX are marginally more sensitive 
than the corresponding DNAN-based formulations, while NTO/TNT and NTO/
DNAN formulations are highly insensitive, i.e. NTO shows higher insensitivity 
with both TNT as well as DNAN unlike another explosives like FOX-7 or TATB.  
The decrease in shock sensitivity on substituting DNAN for TNT shows that 
NTO and FOX-7 improve the shock insensitivity relatively more than TATB and 
RDX in combination with DNAN.  The improvements in shock sensitivity of 
TATB and RDX in combination with DNAN are comparable.  On substituting 
NTO, FOX-7 and TATB for RDX in RDX/TNT 30/70, the shock insensitivity 
improves.  Similarly on substituting NTO, FOX-7 and TATB for RDX in RDX/
DNAN 30/70, the shock sensitivity decreases.  It can be seen that NTO- and 
TATB-based compositions are comparatively more insensitive to a shock 
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stimulus compared to FOX-7 compositions, and that the FOX-7 compositions 
are more insensitive than the RDX-based compositions.  The loading of fine 
solid ingredients in the formulations was limited to 30% due to processing 
problems.  A fine particle size of 14-25 µm adds to the shock insensitivity of 
these formulations.  The shock insensitivity of combinations of NTO and TATB 
with TNT is higher and similar to, respectively, compared to the insensitivity 
of TNT itself.  The shock insensitivity of the combinations of NTO and TATB 
with DNAN is higher and lower, respectively, compared to the insensitivity of 
DNAN itself.  The shock sensitivities of the combinations of FOX-7 with TNT as 
well as DNAN are marginally more insensitive than corresponding RDX based 
formulation.  As seen above, for 60% loading of NTO and FOX-7, the shock 
sensitivity for 30% loadings of NTO, TATB and FOX-7 also depends on both 
the energetic ingredient and the binder. 

3.2.3.2  Impact sensitivity
In the first set of formulations, NTO-, FOX-7- and RDX-based formulations, 
except for HMX, formed with TNT are more sensitive than the corresponding 
DNAN-based formulations.  The decrease in sensitivity on substituting DNAN 
for TNT is due to the inherent non-explosive nature of DNAN and its thicker 
coating over the particles.  The increase in sensitivity on substituting DNAN for 
TNT for HMX-based formulation can be attributed to the non-homogeneity and 
improper preparation of the sample.  The sensitivity of NTO-, FOX-7-, RDX- and 
HMX-based compositions is in decreasing order.  The trend can be attributed 
to the stability of NTO due to inter- and intra-molecular hydrogen bonding and 
the sensitivities of the major energetic ingredients of NTO (0.56 m), FOX-7 
(0.36 m), HMX (0.37 m) and RDX (0.37 m), and their average particle sizes of 
110 µm, 261 µm, 155 µm and 155 µm, respectively.  This trend indicates that 
the sensitivity to impact is also analogous to that of sensitivity to shock.

In the second set of formulations, h50 increases on substituting DNAN 
for TNT in the formulations formed with NTO, FOX-7, TATB and RDX.  As 
discussed above, a thicker coating of DNAN helps to desensitize the energetic 
ingredients.  An increase in insensitivity is observed on substituting NTO, FOX-7 
and TATB for RDX with DNAN, as well as with TNT.  These trends can be 
attributed to the sensitivities of the energetic ingredient as well as that of the 
binders DNAN and TNT.

3.2.3.3  Friction sensitivity
In the first set of formulations, NTO- and FOX-7-based compositions with 
both DNAN and TNT are insensitive up to 36 kg.  This can be attributed to the 
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insensitive nature of crystals of NTO [2] and FOX-7 [29], as well as that of the 
binder coating of DNAN and TNT.  The sensitivity of HMX- and RDX-based 
formulations formed with TNT are more sensitive than the corresponding DNAN-
based formulations.  This trend can be attributed to the relatively softer nature 
of DNAN compared to TNT and better wetting of RDX and HMX within the 
DNAN matrix, and a thicker coating of DNAN over HMX and RDX due to its 
low density, compared to TNT.

In the second set of formulations, the sensitivity observed for NTO-, FOX-7- 
and TATB-based compositions with both DNAN and TNT were insensitive up 
to 36 kg.  As discussed above, this can be attributed to the insensitive nature of 
NTO, FOX-7 and TATB crystals, as well as the coating of DNAN and TNT.  It 
is also seen that with the addition of NTO and FOX-7 up to 60% in TNT, the 
sensitivity of TNT decreases from 32.4 kg to 36 kg.  On the other hand, with 
the addition of 30% and 60% of RDX in TNT, the sensitivity of TNT remains 
constant at 32.4 kg and increases to 28.8 kg, respectively. 

It is discernable that the sensitivity to friction of these formulations mainly 
depends upon the binder or the relatively insensitive ingredient, compared to 
the energetic ingredients.  From this observation it appears that the behaviour of 
sensitivity to friction differs from that of sensitivity to shock/impact.

4 Conclusions

The detonation failure diameter of a bare DNAN charge is greater than 100 mm, 
and under steel confinement it is about 44 mm, while for bare TATB/TNT and 
TATB/DNAN charges it is greater than 35 mm and under steel confinement it 
is about 35 mm.  The rate of the detonation reaction of DNAN is enhanced in 
the presence of high energy ingredients such as RDX, HMX, FOX-7 and NTO 
to varying degrees.  The VODs of TNT-based formulations formed with NTO, 
FOX-7, TATB, HMX and RDX are higher than the corresponding DNAN-
based formulations.  The VODs of FOX-7/TNT and RDX/TNT formulations 
are closely matched for a wide range of proportions of FOX-7 and RDX.  The 
VODs of FOX-7/DNAN formulations decrease much faster compared to RDX/
DNAN formulations, with increases in the proportion of FOX-7.  The shock 
sensitivities of TNT-based formulations formed with NTO, FOX-7, TATB, HMX 
and RDX are greater than for the corresponding DNAN-based formulations.  
The combinations of NTO with TNT and DNAN are more shock insensitive 
than either TNT or DNAN themselves.  The shock sensitivity of FOX-7/DNAN 
formulations decreases much faster, compared to RDX/DNAN formulations, with 
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increases in the proportions of FOX-7 or RDX.  The sensitivity to mechanical 
stimuli of TNT-based formulations containing higher proportions of the energetic 
ingredients NTO, FOX-7, HMX and RDX are greater than the corresponding 
DNAN-based formulations, while with lower proportions of energetic ingredients 
they are more or less comparable for both TNT and DNAN.  In general, the 
NTO-based melt-cast composition is comparatively more insensitive than the 
FOX-7-based composition.  
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