
77An Approximate Model for the Theoretical Prediction of the Velocity...

Central European Journal of Energetic Materials, 2015, 12(1), 77-88
ISSN 2353-1843

An Approximate Model for the Theoretical Prediction 
of the Velocity Increase in the Intermediate 

Ballistics Period

Radosław TRĘBIŃSKI, Marta CZYŻEWSKA

Department of Mechatronics and Aviation, Military University 
of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland 
E-mails: rkt@wat.edu.pl, marta.czyzewska@wat.edu.pl

Abstract: This paper is a continuation of an earlier work [1] by the authors devoted 
to CFD modelling of the intermediate ballistics period.  A semi-analytical model 
is proposed based on the analytical solution of the Prandtl-Meyer expansion 
for an approximate assessment of the magnitude of the velocity increase in the 
intermediate period.  Two variants of the model provide upper and lower estimates 
of the velocity increase.  A comparison of these estimates with the results of 
CFD modelling gives a similar magnitude for the velocity increase.  A formula 
is proposed for a simple estimation of the velocity increase that can be used to 
calculate a correction to the muzzle velocity value obtained by internal ballistics 
models. 
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1 Introduction

Our previous work [1] was devoted to the presentation of the results of modelling 
of the intermediate ballistics using CFD methods.  The aim of this modelling 
was to estimate the magnitude of the velocity increase Δu in the intermediate 
ballistics period.  It was shown that the relative increase in velocity is generally 
less than 1% and only for very low muzzle velocities does it exceed this value.  
Although the CFD model predicts the velocity increase quite precisely, it cannot 
be used in the fire control systems, because it needs a long computing time.  
That is why a simple model, requiring only several seconds of computing time, 
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is desirable.  In this paper we present an approximate, semi-analytical model 
of the intermediate ballistics.  This model is based on the same physical model 
as that presented in [1].  However, a completely different approach to solving 
the mathematical model is applied.  The model can be easily implemented in 
fire control systems.  Moreover, based on the results of [1], a simple formula is 
proposed for estimating the value of Δu.  The formula can be used for calculating 
a correction to the muzzle velocity calculated usinginternal ballistics models.

2 Description of the Model

The results of the modelling presented in [1] proved that the period of time in 
which the projectile undergoes acceleration after leaving the muzzle is very short.  
During this period the flow near the muzzle is dominated by the Prandtl-Meyer 
(P-M) expansion and its reflection at the axis (Figure 1).

Figure 1. Structure of the flow near the muzzle.

An approximate model can be proposed for estimating the mean pressure 
acting on the tail of a projectile based on the analytical solution for plane P-M 
flow.  The solution is given by the following relations [2]:
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where: uR, uφ mean normal and tangential components of the velocity of flow u, 
respectively; ρ – density; p – pressure; c – sound velocity; Dw – specific enthalpy 
increment; um, pm, rm, cm, Mm, φM – muzzle velocity, pressure, density, velocity 
of sound, Mach number and Mach angle, respectively.

For a perfect gas with the exponent k, the following relation between pressure 
p and the angle φ can be derived from the relations (1):
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Based on formula (2), we can find the value of the static pressure at the tail 
of the projectile at a point reached by a characteristic with inclination angle φ. 
In order to estimate the value of the dynamic pressure, we can make use of the 
following formula for the axial component of the velocity of the flow:
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An approximate value of the dynamic pressure can be calculated using the 
following formula:
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In this formula the velocity of the projectile is assumed to be equal to um, 
which is a good approximation, taking into account the fact that the velocity 
increase is small.  The sum of p and Δp gives an approximate value of the pressure 
at a point at the tail of the projectile, which is reached by a characteristic having 
an inclination angle φ.  However, this approximation is valid only until the 
moment when the reflected wave reaches that point.  In order to take into account 
the reflection, we used the acoustic approximation.  For this approximation the 
reflection of a wave can be considered as a superposition of two waves.  The 
waves are symmetric against the reflecting plane (we used the solution for plane 
symmetry).  This means that, at a given characteristic, both waves have the 
same value of the pressure and the axial velocity component, while their radial 
components of velocity have equal values but opposite signs (see Figure 2).  
Therefore, we can compute pr and Δpr for the reflected wave using formulae 
(2) and (4).
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Figure 2. Illustration of the idea of reflection of the wave at the plane 
of symmetry.

The procedure for the estimation of the mean pressure is as follows.  For 
a given position of the projectile, pressure is calculated at n+1 points, having 
radial coordinate ri = rm(i-1)/n.  For each point, the inclination angles of the 
characteristics of incident and reflected waves are calculated (Figure 3 − 
characteristics are assumed to be rectilinear).

Figure 3. Illustration of the procedure for the calculation of the inclination angles.
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(5)

For a given value of φ, we calculate p and Δp.  Then, for a given value of jr 
we calculate pr and Δpr.  If φ <φM, we put p = pm, Δp = 0.  Similarly, if jr<φM, we 
put pr = pm, Δpr = 0.  We then calculate the resultant pressure, assuming linear 
interference of the waves:
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i r m rp p p p p p= + − + ∆ + ∆  (6)

The mean value of the pressure acting on the tail of the projectile is 
calculated as:
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Taking into account that x = um·t (we can neglect the velocity increase in 
assessing the distance the projectile has moved), we can find the dependence 
of the mean pressure on time and then integrate the equation of motion of the 
projectile.  The results of [1] suggest that the mean pressure value acting on the 
forward part of the projectile can be neglected.

The model described above does not take into account the cylindrical 
symmetry.  Due to this symmetry, the pressure in the P-M flow decreases faster 
than for plane symmetry.  Therefore, we can expect that the approximate model 
will provide an upper estimate of the pressure values.

We can take the cylindrical symmetry into account in an approximate manner.  
The continuity equation for cylindrical symmetry has the form: 
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For an isentropic flow we can represent it in the form:
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The first sum and on the right hand side of formula (9) represents the pressure 
derivative for plane symmetry.  Thus, integrating formula (9) along the projectile 
trajectory we obtain:
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We can treat the integral on the right hand side of formula (10) as a correction 



82 R. Trębiński, M. Czyżewska

term to the solution for plane symmetry.  Therefore, we can calculate ∆ pP in the 
way described above and then correct its value.  We estimate values of the radial 
velocity component ur from the relation for plane symmetry:
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In the case of interference of the incident and reflected waves, we calculate 
the value of ur as:

( )( )r r r ru u uϕ ϕ= −  (12)

The integral in formula (10) is calculated numerically, making use of the 
values of pi and uri in consecutive time intervals.

We can expect the above approximation to give a lower estimate of the 
pressure because treating the characteristics as rectilinear causes a given 
characteristic to reach the projectile tail sooner than it should (Figure 4).  This 
causes the pressure to drop faster than for the real characteristics.

Figure 4. Illustration of the difference between rectilinear and real characteristics.

The approximate model can be used with some modifications in the case when 
the velocity of the propellant gases at the starting moment of the intermediate 
ballistics period is subsonic.  In this case, a rarefaction wave enters the muzzle.  
This accelerates the gases and as a result the flow at the muzzle becomes sonic.  
This means that the first characteristic of the P-M flow is positioned at the muzzle.  
Therefore, we can use the approximate model described above to calculate the 
average pressure acting on the projectile.  However, we need to know the new 
parameters at the muzzle, which are different from the results of the internal 
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ballistics calculations.  For this reason, we propose the following approximation. 
We assume that at the initial moment, a centred rarefaction fan is generated 

inside the barrel (Figure 5).  Based on this approximation, we can calculate 
the velocity and pressure at the muzzle, based on the relation for the centred 
rarefaction wave: 

Figure 5. Wave diagram showing the rarefaction fan generated at the moment 
the projectile leaves the muzzle.
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where u0 and c0 mean flow velocity and velocity of sound at the final moment 
of the internal ballistics period respectively.

Because um = cm  at the muzzle, we can obtain the following formula from 
(13):
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The values of the other parameters at the muzzle can be calculated by 
the formulae:
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We can use the calculated values in the formulae derived earlier, except for 
formula (4), where we substitute u0 and Mm0 = u0 /cm for um and Mm, respectively.
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3 Results and Discussion

The results obtained with the approximate model are compared with the results 
of the model described in [1] (subsequently referred to as the CFD model) in 
Figure 6.  This presents the time dependence of the calculated mean pressure 
acting on the projectile tail for a 30 mm caliber launching system.  Zero time 
corresponds to the moment when the projectile leaves the muzzle and the 
expansion of the propellant gases begins (this also applies to Figures 7 and 8).  
The results from the approximate model differ considerably from the CFD model 
results.  However, the variants of the approximate model (without and with 
the correction for cylindrical symmetry) give upper and lower estimates of the 
pressure values.  This means that they also give upper and lower estimates of the 
velocity increase.  The calculated Δu values for a 30 mm launching system are 
given in Table 1.  The first row refers to standard ammunition, whilst the second 
and third rows refer to ammunition with 20% larger and 20% lower powder mass 
respectively.  In all cases, the values of the velocity increase calculated by the CFD 
model are between the values calculated by the two variants of the approximate 
model and quite close to the average of the upper and lower estimates.  This 
result strengthens our belief that the CFD model properly predicts the magnitude 
of the velocity increase in the intermediate ballistics period.

Figure 6. p(t) plots for the CFD model and two variants of the approximate 
model (30 mm launching system).
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Table 1. Results of calculations of the velocity increase in the intermediate 
ballistics period by the CFD model and the two variants of 
the approximate model (plane and cylindrical) for a 30 mm 
launching system

Variant DvCFD, [m/s] Dvplane, [m/s] Dvcylindr, [m/s] Dvav, [m/s]
standard powder 

mass 2.05 3.28 1.31 2.295

20% larger 
powder mass 1.863 2.762 1.03 1.896

20% smaller 
powder mass 2.128 3.385 1.25 2.318

The results obtained for a subsonic case are illustrated by the p(t) and u(t) 
curves, calculated for a 9 mm launching system, shown in Figure 7.  In this 
case, the differences between the results of the approximate model and the 
CFD model are much larger than those for the supersonic case, especially for 
the variant for plane symmetry which differs greatly from the results for the 
CFD model.  The reason for this is obvious, because in the subsonic case the 
propellant gases are accelerated in the radial direction much more intensely than 
in the supersonic case. 

   
Figure 7. p(t) and u(t) plots for the CFD model and the two variants of the 

approximate model (9 mm launching system).

The approximate model can be used for a rough estimation of the velocity 
increase in the intermediate ballistics period.  However, based on the results of 
the CFD model, a much simpler estimation can be proposed.

In our previous paper [1], we invoked results of measurements of the 
acceleration of projectiles presented in [3] and [4] in order to validate the 
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CFD model.  In these papers, the results of measurements of the acceleration 
of projectiles in the intermediate period were used for determining the 
pressure acting on the projectile.  The dependence of the pressure on time was 
approximated by an exponential decay:

0( ) tp t p e β−=  (16)

We found that such an approximation fits well to our results from the CFD 
modelling.  Making use of this approximation, we obtained the following form 
of the projectile equation of motion:
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Integrating this equation, we obtained:
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where Sp means the area of the tail of the projectile and mp its mass.
The coefficient β  has the dimension of the reciprocal of time.  Assuming 

that the muzzle velocity u0 is a characteristic velocity, while the caliber d is the 
characteristic length, we can express the coefficient β by as a non dimensional 
coefficient γ  in the following way:
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d
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In general, the coefficient γ may be a function of several non dimensional 
parameters characterizing the process.  However, we assume that it is only 
a function of the muzzle Mach number Mm.  From formulae (18) and (19) we have:
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This formula suggests that the relative velocity increase is proportional to 
the ratio of the work done by the muzzle pressure on a path equal to half of the 
caliber to the kinetic energy of the projectile at the muzzle.  In order to find the 
values of the coefficient γ (Mm), the results of calculations presented in [1] for 
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various launching systems are used.  These are presented in Table 2.  Based 
on the ΔuCFD values, the coefficients γ  have been estimated and the results are 
shown in Figure 8.

Table 2. Results of calculations of the velocity increase in the intermediate 
ballistics period by the CFD model for various launching systems 
and by formulae (20) and (21)

Caliber, [mm] ΔuCFD, [m/s] Δupmax, [m/s] Error, [%]
5.56 (1)* 2.68 2.75 2.5
5.56 (2)** 3.40 3.00 -11.8

7.62 2.70 2.92 8.2
9 5.11 5.56 8.8

12.7 2.50 2.85 13.8
14.5 5.96 5.04 -15.5
23 3.80 3.68 -3.1
30 2.38 2.83 18.9
122 2.03 1.83 -9.9
155 5.01 5.00 -0.2

*Assault rifle Beryl; ** New assault rifle under development.

Figure 8. Dependence of the coefficient γ on the Mach number Mm.

The dependence of γ on the Mach number Mm is approximated by the 
linear relation:

( ) 0.74 0.24m mM Mγ = +  (20)
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The assumption that the coefficient γ is only a function of the Mach number 
Mm is a rough approximation.  This is demonstrated by the differences between 
the regression line in Figure 8 and the points corresponding to the calculated 
values of γ.  Nevertheless the calculated values of the velocity increase differ 
from the results from the CFD model by no more than 20% (see Table 2).  This 
precision is acceptable because the relative increase in the velocity, as a rule, 
does not exceed 1% of the muzzle velocity.  Therefore, the proposed formulae 
can be used to calculate a correction to the muzzle velocity determined by the 
internal ballistics models, which provide values of u0, p0 and M0.

4 Conclusions

The main results of the work can be summarized as follows:
1. The estimates obtained for the projectile velocity increase in the intermediate 

ballistics period give an upper and a lower limit of the results obtained by 
the use of the CFD model described in [1].

2. The average value of the two estimates gives a good approximation of 
the results obtained by the CFD modelling for the case when the flow 
of propellant gases at the muzzle is supersonic.  In the case of subsonic 
flow, only the lower estimate can be used as an approximate value of the 
velocity increase.

3. The proposed approximate formula approximates, with acceptable accuracy, 
the results of the CFD modelling for various launching systems. 

5 References

 [1] Trębiński R., Czyżewska M., Estimation of the Increase in the Projectile Velocity 
in the Intermediate Ballistics Period, Cent. Eur. J. Energ. Mater., 2015, 12(1), 
63-76.

 [2] Landau L.D., Lifshitz E.M., Fluid Mechanics, Pergamon Press, Oxford, 1963.
 [3] Carlucci D., Vega J., Empirical Relationship for Muzzle Exit Pressure in a 155 mm 

Gun Tube, WIT Trans. Modell. Simul., 2007, 45, 225-229.
 [4] Carlucci D., Frydman A.M., Cordes J.A., Mathematical Description of Projectile 

Shot Exit Dynamics (Set-Forward), J. Appl. Mech., 2013, 80, 031501-1-9.


