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Abstract: Thermal decomposition of energetic materials is accompanied by 
generation of heat, and under certain conditions may lead to the well-known 
phenomenon of the self-ignition (or thermal explosion). Therefore, it is of 
great concern of explosive community to predict whether or not a speci-
men of energetic material will ignite or not under given conditions (defined 
primarily by a specimen mass and shape, surrounding temperature, etc.).
In order to describe the reactive heat conduction phenomena in an infinite 
slab, cylindrical, and spherical geometry of an explosive material, an own 
computer program, based on the thermal explosion theory and the finite 
difference method, was developed.
The program was tested by the comparison of calculated times to igni-
tion for some standard high explosives with times to ignition determined 
experimentally, as well as with times to ignitions calculated by some other 
authors. The results of calculations were also compared with the results of 
calculation according to an analytical solution of the heat balance equation 
derived by Frank-Kamenetskii.
It was found out that not only values of the activation energy and pre-
exponential factor, but also the kinetic model of thermal decomposition 
used in the calculation, have a crucial influence on the results of calculation. 
It was also shown that the Frank-Kamenetskii equation gives consider-
ably lower values of the times to ignition, and higher values of the critical 
temperatures for explosives studied.

Keywords: energetic materials, self-ignition, thermal explosion, numeri-
cal modeling
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Introduction

If specimen of an explosive material is heated, and if it decomposes 
with the rate given by the equation [1]:

)(αα eAfk
dt
d

T
(−E / RT ) f (α )== , (1)

where: α – conversion; t – time; dα/dt – rate of conversion; kT – tem-
perature dependent rate constant, f(α) – function which represents the 
hypothetical model of  the reaction mechanism (so-called reaction model); 
E – activation energy; A – pre-exponential factor, and R – universal gas 
constant, than the specimen heat balance can be described by the follow-
ing equation [1, 2]:
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where: T is temperature; c – specific heat capacity; ρ – density; λ – thermal 
conductivity; ∇2 – Laplacian operator; Q – heat of decomposition.

The left-hand side of Eq. 2 gives the rate of the heat build-up in an 
explosive material specimen; the first term in the right side is the rate of 
heat loss into the surroundings; while the last right-hand term is the rate 
of heat generation due to exothermic reactions.

Since thermal ignition of explosive components in ammunition is always  
a problem of concern, the explosive community is permanently search-
ing for an efficient method for solving reactive heat conduction problem 
in propellants and explosives. Since an analytical solution of the heat 
conduction equation with chemical reaction, the so-called reactive heat 
conduction is out of question; the approximate techniques and numerical 
methods are subjects of many investigations in this field. 

Different simplifications of the Eq. 2 have been proposed in 
order to calculate the critical conditions of self-ignition. N. N. Se-
menov, for example, allowed the temperature to be uniform through 
a sample, and reaction to follow the zero-order kinetic law. He 
was than able to compare the heat generation and the heat loss 
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rates, and to derive the critical conditions of self-ignition [1, 3].  
D. A. Frank-Kamanetskii tried to find steady state solution of Eq. 2 in the
case of the zero-order kinetic law, but without assuming the temperature
to be spatially uniform through a specimen [1, 3]. In this way he derived
the critical conditions for thermal explosion in the following way [3]:
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where: Te is surrounding temperature, dc characteristic dimension of the 
sample (thickness of the slab, or diameter of cylinder and sphere), δc is 
Frank-Kamanetskii parameter, or form factor (δ = 0.88 for infinite slab, 
2.00 for infinite cylinder, 3.32 for sphere, etc.).

According to the Frank-Kamanetskii solution of Eq. 2 equations for the 
calculation of the critical temperature (Tc), critical sample half-thickness 
(ac), and time to ignition (tc), are derived [4]. The time to ignition (tc), 
i.e. time required for an exothermic reaction, in an adiabatic container, to
reach the point of thermal ignition can be calculated by equation:
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The critical half-thickness (ac), i.e. half thickness of a sample in an 
unstirred container in which the heat losses to the environment are less 
than the retained heat:
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The critical temperature (Tc), i.e. the lowest temperature of an unstirred 
container at which the heat losses to the environment are less than the 
retained heat leading to a build-up of internal temperature:
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To obtain time-dependent solution of the heat of equation different nu-
merical techniques have to be applied. J. Zinn and C. Mader used numerical 
method based on a Fourier series spatial representation of solutions to obtain 
the ignition times for slabs, cylinders, and spheres of explosive material [2, 5].  
A. Merzhanov and co-workers were the first that applied the finite differ-
ence method to solve the heat conduction equation with the zero-order
kinetic reaction model. C. A. Anderson developed the finite difference
code for one-dimensional heat conduction, based on zero-order kinetic
model and the Crank-Nicolson method. This code treats the problems of
layered media in slabs, cylindrical, or spherical geometry, and incorpo-
rates temperature dependent thermal properties and phase transitions [6].

Since thermal decomposition model plays a crucial role in each numerical 
method, some authors have tried to incorporate more complex kinetic mod-
el into computer codes based on the finite difference method. For example,  
J. Isler used the power law kinetic model to describe thermal ignition of
a nitrocellulose propellant [1, 7]. R. McGuire and C. Tarver used 2-3
steps chemical decomposition models and incorporated them to a thermal
conduction code based on the finite difference method, obtaining a good
agreement with experimental results [8].

Numerical technique applied in the program

In the case of infinite long cylinders, infinite slabs, and sphere, the 
Laplacian operator (N2) in the general heat conduction equation (Eq. 2) 
reduces in one dimension [5]:
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where r is radius of cylinder (or sphere). The integer m has a value 0 for 
slabs, 1 for cylinders, and 2 for spheres). In the case of an infinite slab r 
is replaced by slab thickness (x). Thus, for example, Eq. 2 for an infinitely 
long cylinder will have the form:
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   .	 (8)

Time dependent solution of Eq. 8 can be obtained by applying the 
finite difference method, i.e. by approximating partial derivatives with 
finite differences. The finite difference scheme of an infinitely long cylin-
der whose time-dependent temperature field we wish to compute from an 
initial temperature distribution, surrounding temperature, and boundary 
conditions may be represented by Figure 1.

The radius of an infinitely long cylinder (rc) is divided into k cells, 
thickness of which is ∆r (∆r = rc / k). The initial temperature (at t = 0, i.e. 
j = 0, where j is time index) is specified at individual mesh points (

0
,0
=j
iT , 

i = 0 to k-1, where i is space index), while the temperature at the cylinder 
surface ( j

sT ) is specified by the boundary conditions (Eqs. 16 and 17).
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Figure 1.	Finite difference scheme of an infinitely long cylinder.

For the case of an infinitely long cylinder the space derivatives in Eq. 
8, in a time j, may be approximated by the following finite differences [6]:
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For the case of spheres and infinite slabs the space derivatives will 
be [6]:








 −
+

−+
=








∂
∂

+
∂
∂ +−+

r
TT

r
TTT

r
T

rr
T j

i
j

i
j

i
j

i
j

i

∆
222 1

(∆r2 )
11

2

2

   ,	 (10)








 −+
=








∂
∂ −+ 211

2

2

(∆x2 )
TTT

x
T j

i
j

i
j

i    .	 (11)

The time derivative in Eq. 8 may be replaced by its simplest finite 
difference approximation [6]:
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where ∆t is time increment.
By replacing the space and time derivatives in Eq. 8 by the finite differences 

(Eqs. 9-12), the equation for the calculation of temperature distribution along 
a space co-ordinate, at time t j+1, can be derived. For example, in the case of 
a cylinder this equation will be:
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It follows from the above equation that the temperature distribution 
along a cylinder radius at time t j+1 is evaluated from temperature distribu-
tion at earlier time (t j), where:

t j+1 = t j + Δt  .                                                                                (14) 

By an analogous way the equations for the calculation of temperature 
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distribution along a sphere radius or a slab thickness can be obtained from 
Eqs. 10, 11, 12, and 8. 

In additions to the finite difference approximation to the reactive 
heat conduction equation, the approximations to the initial and bound-
ary conditions should be included in order to calculate time-temperature 
distribution along a specimen space co-ordinate.

The initial conditions give an initial temperature distribution (at t = 
0) along a specimen radius. In the most usual way the initial conditions are
given in the form:

0
,0

0 == = j
i

j
i TT  where i = 0, 1, 2, 3, ..., k-1   .	 (15)

The boundary conditions give the temperature at a specimen surface 
at any time (Ts

j). The simplest case is when the specimen surface tempera-
ture remains constant during the whole process. In this case the boundary 
conditions can be written in the form:

.constTT e
j

s ==    ,	 (16)

where Te is surrounding temperature. However, in the case of convective 
heat transfer from an ambient fluid to a specimen surface, the boundary 
conditions are given by the following equation [6, 7]:

TTTT ks
es )( 1−−

−=− λε
	 (17)

where ε is the heat transfer coefficient.

Results and discussion

Applying the numerical technique described above, the computer 
program named THERMEX was written. The accuracy and applicability 
of the program is tested in several ways: a) influence of time and space 
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increments on the results of calculation; b) comparison of the results of 
calculation with the results of calculation by similar computer programs, 
and c) influence of kinetic model on the results of calculation.

Since an explicate finite difference solution to the differential equa-
tions is often conditionally stable, the correct choice of space and time 
increments is of crucial importance to obtain accurate solutions. Because 
of that, a detailed analysis of influence of time and space increments on 
the results of calculation was carried out and reported in previous paper 
[9]. The analysis has shown that the time increment which enables the 
times to ignition to be calculated with a sufficiently small error, may be 
chosen on the basis of the stability criterion given by the equation [6]:
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⋅ 2)(ρ
λ

   .	 (18)

The results have shown that, in order to obtain ignition times which 
differ less than 1% in the respect to ignition times obtained by the ex-
trapolation to ∆t→0, the value of fs  should be less than 0.01. On the other 
hand, the space increment has to be also very small – from some tenth 
of microns to some hundreds of microns, depending on the surrounding 
temperature and sample size.

In order to compare results of calculation obtained by THERMEX 
with results obtained by similar computer codes, hexogen (RDX) sphere 
25.4 mm in diameter was used as a test model. The sphere, being initially 
at the temperature of 25 °C, was subjected instantaneously to the sur-
rounding temperatures higher than the critical ones – in the 180-260 °C 
range. The same test model was used by J. Zinn and C. Mader [2, 5], and 
by C. Anderson [6] to study numerically the thermal ignition phenomena 
of RDX. The times to ignitions calculated by THERMEX and similar 
computer codes, as well as by the Frank-Kamenetskii equation (Eq. 4) 
are given in Table 1.
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Table 1.	 Times to ignition for RDX spheres 25.4 mm in diameter calcu-
lated by different authors and different methods

Surrounding 
temperature 

[°C]

Time to ignition [s]

J. Zinn and
C. Mader

[2, 5]

C. Anderson
(code TE-

PLO) 
[6]

C. Anderson
(code TE-
PLO) [6]*

This work 
(code THER-

MEX)

Calculated 
by Frank-

Kamenetskii 
equation

180 1000 1030 1200 1051.8 236.3
200   420   458   593   466.9   27.6
220   120   162   183   166.1     3.9
240    33       42.9        43.8     44.0     0.6
260      10.5       10.1        10.0     10.3     0.1

* Time to ignition is calculated taking temperature-dependent heat capacity and
taking into account melting of RDX.
The values of the kinetic and thermal parameters of RDX used in the calcula-
tions were: ρ = 1.8 g/cm3; Q = 2093 J/g ; E = 199 kJ/mol; A = 3.16 1018 1/s;
c = 2.093 J/g K, and λ = 0.293 W/m K [2, 6].

It is evident from Table 1 that the agreement between the times to 
ignition calculated by THERMEX and by similar computer programs (e.g. 
TEPLO) is very good. At the same time, the times to ignition calculated 
by the Frank-Kamenetskii equation are for order of magnitude lower in 
all cases.

The times to ignition are also calculated for a 25.4 mm diameter RDX 
cylinder, and compared with the experimentally obtained values. The results 
of the comparison are shown in Figure 2. A reasonable good agreement was 
found between the experimentally obtained and calculated ignition times, as 
well as between the results of calculation in this work and those obtained by  
J. Zinn and C. Mader [2].
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Figure 2.	Comparison of experimentally obtained and calculated times 
to ignition for an RDX cylinder 25.4 mm in diameter.

An analysis given in Table 2 has shown that the critical temperatures 
for some standard high explosives calculated by the Frank-Kamenetskii 
equation (Eq. 6) are up to 20% higher in respect to the critical tempera-
tures determined experimentally [5]. At the same time THERMEX gives 
values that differ less than 10% from the experimental ones, except in the 
case of NQ for which the difference is 13%.

Table 2.	 Comparison of calculated and experimental critical temperatures 
for some standard high explosives

Explosive ac
mm

Tc
(Experim. [5])

°C

Tc 
(THER-
MEX) 

°C

Tc 
(Frank-

Kamenetskii 
Eq.)
°C

r
g/cm3

Q
J/g

E
kJ/mol

A
1/s

l
W/ 

m K

HMX 0.33 253-255 254 269 1.81 2093 221 5.0 1019 0.29
RDX 0.35 215-217 224 231 1.72 2093 197 2.0 1018 0.10
TNT 0.38 287-289 306 319 1.57 1256 144 2.5 1011 0.21

PETN 0.34 200-203 198 210 1.74 1256 197 6.3 1019 0.25
NQ 0.39 200-204 227 242 1.63 2093 88 2.8 107 0.21

HNS 0.37 320-321 342 352 1.65 2093 127 1.5 109 0.21
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The critical temperatures are calculated by THERMEX in convenient 
way – from the plot of logarithms of the calculated times to ignition vs 
the reciprocal surrounding temperature (Figure 3). These plots are linear 
over quite a large region but bend upward sharply near the critical tem-
perature. At the critical temperature the plot becomes vertical, indicating 
an infinitely long induction period. 

Figure 3.	Determination of critical temperature. 

Space- and time-temperature profiles

Although the time to ignition and the critical temperature are the essen-
tial parameters for the prediction of self-ignition possibility of an explosive 
specimen, it was also interesting to have details of the heat flow, i.e. to have the 
temperature-time profile at a given position within a specimen, and the 
temperature-radius profile at a given time.

It is known that the time to ignition decreases with the surrounding 
temperature increase (Table 1), as well as that the ignition of the specimen 
occurs at a position closer to the specimen surface with the increase of 
the surrounding temperature. The last is visible in Figures 4 and 5, which 
shows calculated spatial distribution of the temperature at different times 



34 M. Sućeska, S. Matečić Mušanić

for RDX spheres subjected to different surrounding temperatures (180 
and 190 °C).

Figure 4.	Calculated temperature-diameter profiles at different times for 
RDX sphere 25.4 mm in diameter subjected to 180 °C (sphere 
initial temperature is 25 °C; boundary conditions according to 
Eq. 16).
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Figure 5.	Calculated temperature-diameter profiles at different times for 
RDX sphere 25.4 mm in diameter subjected to 190 °C (sphere 
initial temperature is 25 °C; boundary conditions according to 
Eq. 16).

For low surrounding temperatures, e.g. 180 °C, the ignition occurs at 
the centre of sphere. At the same time the surface of the sphere remains 
at the surrounding temperature. For 190 °C surrounding temperatures the 
ignition occurs at the position between sphere centre and surface (r/rs ≈ 
0.85). For the surrounding temperature higher than 190 °C the ignition 
will occur at the position near cylinder surface, while at the same time in 
this case the centre of sphere will remain relatively cool during the whole 
induction period. 

The above mentioned is also visible in Figure 6, showing the time-
temperature distribution at several locations within the RDX sphere 
subjected to 190 °C surrounding temperature. At the location r/rs ≈ 0.96 
(near sphere surface) the temperature increases quickly, while at the centre 
of sphere the temperature reaches the same value only at the end of the 
induction period.
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Figure 6.	Calculated temperature-time profiles at different locations inside 
a 25.4 mm diameter sphere of RDX subjected to the 190 °C 
surrounding temperature.

Influence of kinetic model on the results of calculation

In order to test influence of kinetic model on the results of calculations, the 
thermal decomposition and the self-ignition data obtained experimentally by  
J. Isler and D. Kayser are used in the paper [1]. The authors have carried
out the thermal decomposition experiments in air by both manual (130-150
°C) and by thermogravimetry technique (150-170 °C), using nitrocellulose
(NC) propellant samples being ~5 mg in mass.

The self-ignitions experiments the authors have performed with 
cylindrical samples of NC propellant having 7 mm in diameter, 26 mm 
in length, and 1.3 g in mass. The central temperature of samples was 
measured by 0.5 mm wide thermocouple inserted into a hole made along 
the cylinder axis.

On the basis of the thermal decomposition experiments they have 
obtained degree of conversion-time dependency given in Figure 7. It is 
evident from Figure 7 that all α–t curves are of sigmoid shape, with the 
inflexion at about 0.25 conversion (25% decomposition). That means 
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that the rate of conversion (Figure 8), and consequently the rate of heat 
generation, increase up to this point, and decreases gradually above it. 

Figure 7.	NC propellant conversion as a function of time at different 
environmental temperatures.

Figure 8. Dependence of rate of NC propellant conversion on degree of 
conversion for several different environmental temperatures.

The shape of (dα / dt ) = f (α ) dependency shown in Figure 8 is 
typical for autocatalytic reactions and may be described mathematically 
by the equation:

mn
TT kfk

dt
d )1()( αααα

−== . (19)
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Since the rate of heat generation decreases above 0.25 conversions it 
is reasonable to suppose that the self-ignition of NC propellant may occur 
only below that conversion. This means that, in order to study the self-
ignition phenomena, the kinetic study may be limited to the early stage 
of NC propellant decomposition: 0 < α < 0.25. It was shown in the previ-
ous paper [10] that for conversions lying between 0 and 0.25, the power 
law kinetic model (Eq. 20) fits the best experimental )()/( αα fdtd =
dependency:

n
TT kfk

dt
d ααα

== )(    .	 (20)

Because of its simplicity (since f (α) = 1) the zero-order kinetic 
model is often used to describe the thermal decomposition of energetic 
materials. One note from Figure 7 that α–t dependency is almost linear 
for conversions up to 0.10. That means that the zero-order kinetic model 
(Eq. 21) may be used to describe (roughly) early stage of NC propellant 
decomposition. 

α = kTα,  or in differential form:    TT kfk
dt
d

== )(αα    .	 (21)

By the non-linear curve fitting procedure of experimentally obtained 
data in accordance with the above mentioned given kinetic models, the 
rate constants (kT in Eq. 19-21) are evaluated for each temperature. The 
activation energy and the pre-exponential factor are then calculated from 
lnkT – 1/T dependency, according to the Arrhenius equation [10]. The 
values of kinetic parameters obtained in this way are given in Table 3.
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Table 3.	 Values of kinetic parameters derived applying different kinetic 
models

Kinetic model Differential kinetic equation Function f(a) Values of kinetic 
parameters

Zero order
(0 < a < 0.10) f(a) = 1 E = 189.14 kJ/mol;

A = 1.40×1018 1/s

Power low
(0 < a < 0.25) f(a) = a n

E = 182.20 kJ/mol; 
A = 4.20×1017 1/s
n = 0.29

Autocatalytic
(0 < a < 0.95) f(a) = a n(1 – a)m

E = 170.60 kJ/mol;
A = 7.57×1016 1/s
n = 0.67; m = 2.27

Using the above mentioned kinetic models and the values of kinetic 
parameters given in Table 3, the self-ignition calculations for 
cylindrical NC propellant specimen 7 mm in diameter was carried out. 
The follow-ing values of thermokinetic parameters of NC propellant 
are used in the calculations:
– specific heat capacity (c) = 1.254 J/g K
– heat of decomposition (Q) = 3970 kJ/kg
– thermal conductivity (λ) = 0.16 W/m K
– heat transfer coefficient (ε) = 0.22 W/m2 K
– density (ρ) = 1.6 g/cm3

The influence of kinetic model on the calculated times to ig-
nition for tested NC propellant subjected to 156 °C environmen-
tal temperature is illustrated in Figure 9. The results show that 
the influence of kinetic model on the calculated values of times 
to ignition is very pronounced – difference is almost 6 times.  
At the same time the results show that power law kinetic model gives the 
best agreement between experimentally obtained and calculated times to 
ignitions for 156 °C surrounding temperature.

αα Tk=

n
Tk

dt
d αα

=

mn
Tk

dt
d )1( ααα

−=
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Figure 9.	Times to ignition of cylindrical NC propellant specimen 7 mm 
in diameter at 156 °C surrounding temperature calculated using 
different kinetic models.

Conclusions

The presented numerical model for the studying self-ignition phenom-
ena of explosives, based on the finite difference method, can be used to 
predict the time to ignition, the critical temperature, as well as to obtain 
temperature-time, and temperature-space co-ordinate profiles of an ex-
plosive material specimen.

However, because of complexity of the self-ignition phenomena, a 
number of parameters may affect results of calculation; e.g. values of 
space and time increments, boundary conditions, kinetic model used in 
the calculations, thermochemical and thermokinetic constants of an en-
ergetic material (heat capacity, heat of decomposition, heat conductivity, 
heat transfer coefficient etc.).

References

[1] J. Isler, D. Kayser, Correlation Between Kinetic Properties and Self-Ignition of



41Numerical Modeling of Self-Ignition of Energetic Materials

Nitrocellulose, 6th Symp. Chem. Probl. Connected Stab. Explos, Kungalav, Sveden 
1982, pp. 217-237.

[2] J. Zinn, C. L. Mader, Thermal Initiation of Explosives, J. Appl. Phys., 1960, 31(2),
323.

[3] A. G. Merzhanov, V. G. Abramov, Thermal Explosion of Explosives and Propel-
lants. A Review, Propellants and Explosives, 1981, 6, 130.

[4] Standard practice for calculation of hazard potential figures-of-merit for thermally
unstable materials, ASTM standard E 1231-88.

[5] C. L. Mader, Numerical Modeling of Explosives and Propellants, CRC Press, Boca
Raton, 1998, pp. 136-187.

[6] C. A. Anderson, TEPLO – A Heat Conduction Code for Studying Thermal Explo-
sion in Laminar Composites, Report LA-4511, Los Alamos Scientific Laboratory,
Los Alamos 1970.

[7] J. Isler, Auto-inflammation de poudres a simple base, Propellants, Explos. Pyro-
techn., 1986, 11, 40.

[8] R. R. McGuire, C. M. Tarver, Chemical Decomposition Models for Thermal
Explosion of Confined HMX, RDX, and TNT Explosives, Report UCRL-84986,
Lawrence Livermore Laboratory, Livermore 1981.

[9] M. Sućeska, A Computer Program Based on Finite Difference Method for Studying
Thermal Initiation of Explosives, J. Thermal Analysis and Calorimetry, 2002, 68,
865-875.

[11] M. Sućeska, Influence of Thermal Decomposition Kinetic Model on Results of
Propellants Self-Ignition Numerical Modeling, Proc. of the 5th Seminar “New trends
in Research of Energetic Materials, April 24-25 Pardubice, Czech Republic, 2002,
pp. 309-322.




